[1] ZHAO Z G, LUO X, CHEN M J, et al. A survey of knowledge graph construction using machine learning[J]. Computer Modeling in Engineering[WT《Times New Roman》]& Sciences, 2024, 139(1): 225-257. [2] 郑庆华, 董博, 钱步月, 等. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展, 2019, 56(1): 209-224. ZHENG Q H, DONG B, QIAN B Y, et al. The state of the art and future tendency of smart education[J]. Journal of Computer Research and Development, 2019, 56(1): 209-224. (in Chinese) [3] 王彩云, 郑增亮, 蔡晓琼, 等. 知识图谱在医学领域的应用综述[J]. 生物医学工程学杂志, 2023, 40(5): 1040-1044. WANG C Y, ZHENG Z L, CAI X Q, et al. Overview of the application of knowledge graphs in the medical field[J]. Journal of Biomedical Engineering, 2023, 40(5): 1040-1044. (in Chinese) [4] 蒋川宇, 韩翔宇, 杨文蕊, 等. 医学知识图谱研究与应用综述[J]. 计算机科学, 2023, 50(3): 83-93. JIANG C Y, HAN X Y, YANG W R, et al. Survey of medical knowledge graph research and application[J]. Computer Science, 2023, 50(3): 83-93. (in Chinese) [5] 穆维松, 刘天琪, 苗子溦, 等. 知识图谱技术及其在农业领域应用研究进展[J]. 农业工程学报, 2023, 39(16): 1-12. MU W S, LIU T Q, MIAO Z W, et al. Research progress on knowledge graph technology and its application in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 1-12. (in Chinese) [6] 唐闻涛, 胡泽林. 农业知识图谱研究综述[J]. 计算机工程与应用, 2024, 60(2): 63-76. TANG W T, HU Z L. Survey of agricultural knowledge graph[J]. Computer Engineering and Applications, 2024, 60(2): 63-76. (in Chinese) [7] 陈烨, 周刚, 卢记仓. 多模态知识图谱构建与应用研究综述[J]. 计算机应用研究, 2021, 38(12): 3535-3543. CHEN Y, ZHOU G, LU J C. Survey on construction and application research for multi-modal knowledge graphs[J]. Application Research of Computers, 2021, 38(12): 3535-3543. (in Chinese) [8] 张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37. ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques[J]. Computer Engineering, 2022, 48(3): 23-37. (in Chinese) [9] 张西硕, 柳林, 王海龙, 等. 知识图谱中实体关系抽取方法研究[J]. 计算机科学与探索, 2024, 18(3): 574-596. ZHANG X S, LIU L, WANG H L, et al. Survey of entity relationship extraction methods in knowledge graphs[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. (in Chinese) [10] 陈华钧. 浅谈大模型时代的知识图谱技术栈[J]. 中国计算机学会通讯, 2023, 19(9): 46-51. CHEN H J. On technology stack’s knowledge map in the age of big model[J]. Communication of the CCF, 2023, 19(9): 46-51. (in Chinese) [11] PAN J Z, RAZNIEWSKI S, KALO J C, et al. Large language models and knowledge graphs: opportunities and challenges[EB/OL].[2024-02-11]. https://arxiv.org/abs/2308.06374v1. [12] 王鑫, 陈子睿, 王昊奋. 知识图谱与大语言模型协同模式探究[J]. 中国计算机学会通讯, 2023, 19(11): 10-17. WANG X, CHEN Z R, WANG H F. Exploration of collaborative patterns between knowledge graph and large language model[J]. Communications of the CCF, 2023, 19(11): 10-17. (in Chinese) [13] PAN S R, LUO L H, WANG Y F, et al. Unifying large language models and knowledge graphs: a roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580-3599. [14] ZHANG D Z, YU Y H, DONG J H, et al. MM-LLMs: recent advances in multimodal large language models[EB/OL].[2024-02-11]. https://arxiv.org/abs/2401.13601v5. [15] 舒文韬, 李睿潇, 孙天祥, 等. 大型语言模型: 原理、实现与发展[J]. 计算机研究与发展, 2024, 61(2): 351-361. SHU W T, LI R X, SUN T X, et al. Large language models: principles, implementation, and progress[J]. Journal of Computer Research and Development, 2024, 61(2): 351-361. (in Chinese) [16] 李光明. 初中化学学科知识图谱的构建与可视化查询系统的实现[D]. 上海: 上海师范大学, 2020. LI G M. Construction of knowledge map of junior middle school chemistry and realization of visual query system[D]. Shanghai: Shanghai Normal University, 2020. (in Chinese) [17] 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. (in Chinese) [18] 李源, 马新宇, 杨国利, 等. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10): 2358-2376. LI Y, MA X Y, YANG G L, et al. Survey of causal inference for knowledge graphs and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376. (in Chinese) [19] YAN L X, SHA L L, ZHAO L X, et al. Practical and ethical challenges of large language models in education: a systematic scoping review[J]. British Journal of Educational Technology, 2024, 55(1): 90-112. [20] WANG J Q, CHANG Y Y, LI Z, et al. TechGPT-2.0: a large language model project to solve the task of knowledge graph construction[EB/OL].[2024-02-11]. https://arxiv.org/abs/2401.04507v1. [21] SYED M H, HUY T Q B, CHUNG S T. Context-aware explainable recommendation based on domain knowledge graph[J]. Big Data and Cognitive Computing, 2022, 6(1): 11. [22] ABU-SALIH B, ALOTAIBI S. A systematic literature review of knowledge graph construction and application in education[J]. Heliyon, 2024, 10(3): 25383. [23] 杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法[J]. 软件学报, 2018, 29(10): 2931-2947. YANG Y J, XU B, HU J W, et al. Accurate and efficient method for constructing domain knowledge graph[J]. Journal of Software, 2018, 29(10): 2931-2947. (in Chinese) [24] 周东岱, 董晓晓, 顾恒年. 教育领域知识图谱研究新趋向: 学科教学图谱[J]. 电化教育研究, 2024, 45(2): 91-97, 120. ZHOU D D, DONG X X, GU H N. A new trend of knowledge graph research in education: subject teaching graph[J]. e-Education research, 2024, 45(2): 91-97, 120. (in Chinese) [25] DANG F R, TANG J T, PANG K Y, et al. Constructing an educational knowledge graph with concepts linked to Wikipedia[J]. Journal of Computer Science and Technology, 2021, 36(5): 1200-1211. [26] SHEN Y L, CHEN Z H, CHENG G, et al. CKGG: a Chinese knowledge graph for high-school geography education and beyond[M]. Berlin, Germany: Springer International Publishing, 2021. [27] ZHAO B W, SUN J D, XU B, et al. EDUKG: a heterogeneous sustainable K-12 educational knowledge graph[EB/OL].[2024-02-11]. https://arxiv.org/abs/2210.12228v1. [28] 郑理欣. 面向计算机领域的多模态知识图谱构建方法研究[D]. 石家庄: 河北科技大学, 2022. ZHENG L X. Research on the construction method of multimodal knowledge map for computer field[D]. Shijiazhuang: Hebei University of Science and Technology, 2022. (in Chinese) [29] 赵宇博, 张丽萍, 闫盛, 等. 个性化学习中学科知识图谱构建与应用综述[J]. 计算机工程与应用, 2023, 59(10): 1-21. ZHAO Y B, ZHANG L P, YAN S, et al. Construction and application of discipline knowledge graph in personalized learning[J]. Computer Engineering and Applications, 2023, 59(10): 1-21. (in Chinese) [30] 董晓晓, 周东岱, 黄雪娇, 等. 学科核心素养发展导向下教育领域知识图谱模式构建方法研究[J]. 电化教育研究, 2022, 43(5): 76-83. DONG X X, ZHOU D D, HUANG X J, et al. Research on method of constructing knowledge graph mode in educational field oriented by subject core literacy[J]. e-Education Research, 2022, 43(5): 76-83. (in Chinese) [31] CHETOUI I, EL BACHARI E, EL ADNANI M. Course recommendation model based on knowledge graph embedding[C]//Proceedings of the 16th International Conference on Signal-Image Technology[WT《Times New Roman》]& Internet-Based Systems (SITIS). Washington D.C., USA: IEEE Press, 2022: 510-514. [32] KUMAR K, MANOCHA S. Constructing knowledge graph from unstructured text[J]. Self, 2015, 3: 4. [33] BALTRUŠAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443. [34] XU N, WANG J Y, TIAN Y, et al. AnANet: association and alignment network for modeling implicit relevance in cross-modal correlation classification[J]. IEEE Transactions on Multimedia, 2022, 25: 7867-7880. [35] JIANG D, YE M. Cross-modal implicit relation reasoning and aligning for text-to-image person retrieval[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 2787-2797. [36] YANG X, TAO Q J, FENG X, et al. MMGA: multimodal learning with graph alignment[EB/OL].[2024-02-11]. https://arxiv.org/abs/2210.09946v2. [37] ZHANG X, YUAN J, LI L, et al. Reducing the bias of visual objects in multimodal named entity recognition[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2023: 958-966. [38] 高国伟, 王亚杰, 李永先. 我国知识元研究综述[J]. 情报科学, 2016, 34(2): 161-165. GAO G W, WANG Y J, LI Y X. Review of the research of domestic knowledge element[J]. Information Science, 2016, 34(2): 161-165. (in Chinese) [39] 朱晓芸, 陈奇, 杨枨, 等. 决策支持系统中的广义知识元及模型库[C]//1993中国控制与决策学术年会论文集. 沈阳: 东北大学出版社, 1993: 4. ZHU X Y, CHEN Q, YANG C, et al. Generalized knowledge elements and model bases in decision support systems[C]//Proceedings of the 1993 China Control and Decision Academic Annual Conference. Shenyang: Northeastern University Press, 1993: 4. (in Chinese) [40] 施江勇, 唐晋韬, 王勇军, 等. 基于知识图谱的新兴领域课程教学资源建设[J]. 高等工程教育研究, 2022(3): 15-20. SHI J Y, TANG J T, WANG Y J, et al. The construction of curriculum resources in emerging fields based on knowledge graph[J]. Research in Higher Education of Engineering, 2022(3): 15-20. (in Chinese) [41] LI Z J, CHENG L Y, ZHANG C H, et al. Multi-source education knowledge graph construction and fusion for college curricula[C]//Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT). Washington D.C., USA: IEEE Press, 2023: 359-363. [42] 潘颖, 欧启忠, 肖耿毅. 面向语义的课程知识本体的构建[J]. 电化教育研究, 2007, 28(2): 19-21, 27. PAN Y, OU Q Z, XIAO G Y. Construction of semantic-oriented curriculum knowledge ontology[J]. e-Education Research, 2007, 28(2): 19-21, 27. (in Chinese) [43] 邢科云. 课程知识本体的构建与应用研究[D]. 杭州: 杭州师范大学, 2010. XING K Y. Research on the construction and application of curriculum knowledge ontology[D]. Hangzhou: Hangzhou Normal University, 2010. (in Chinese) [44] 姜强, 赵蔚, 王续迪. 自适应学习系统中用户模型和知识模型本体参考规范的设计[J]. 现代远距离教育, 2011(1): 61-65. JIANG Q, ZHAO W, WANG X D. Design of user model and knowledge model ontology reference specification in adaptive learning system[J]. Modern Distance Education, 2011(1): 61-65. (in Chinese) [45] 詹川. 基于教育心理学的课程知识本体模型研究[J]. 图书情报工作, 2011, 55(14): 111-115. ZHAN C. E-learning course ontology model based on educational psychology[J]. Library and Information Service, 2011, 55(14): 111-115. (in Chinese) [46] 黄焕, 元帅, 何婷婷, 等. 面向适应性学习系统的课程知识图谱构建研究——以"Java程序设计基础"课程为例[J]. 现代教育技术, 2019, 29(12): 89-95. HUANG H, YUAN S, HE T T, et al. Research on the construction of course knowledge graph for adaptive learning system—taking "Java programming foundation" course as an example[J]. Modern Educational Technology, 2019, 29(12): 89-95. (in Chinese) [47] GAO J, WANG L, XU F. Research on the construction of course knowledge graph of high school information technology[C]//Proceedings of the International Conference on Artificial Intelligence and Education (ICAIE). Washington D.C., USA: IEEE Press, 2020: 211-215. [48] YANG Z J, WANG Y, GAN J H, et al. Design and research of intelligent Question-Answering(Q[WT《Times New Roman》]&A) system based on high school course knowledge graph[J]. Mobile Networks and Applications, 2021, 26(5): 1884-1890. [49] 宋丹, 胡瑛, 方正军, 等. 基于学情数据的智慧教学模式研究与实践[J]. 高等工程教育研究, 2022(6): 116-120. SONG D, HU Y, FANG Z J, et al. Research and practice of intelligent teaching mode based on learning situation data[J]. Research in Higher Education of Engineering, 2022(6): 116-120. (in Chinese) [50] QAISER S, ALI R. Text mining: use of TF-IDF to examine the relevance of words to documents[J]. International Journal of Computer Applications, 2018, 181(1): 25-29. [51] ZHU P, ZHONG W, YAO X M. Auto-construction of course knowledge graph based on course knowledge[J]. International Journal of Performability Engineering, 2019, 15(8): 2228. [52] BAI J H, CHE L. Construction and application of database micro-course knowledge graph based on Neo4j[C]//Proceedings of the 2nd International Conference on Computing and Data Science. New York, USA: ACM Press, 2021: 1-5. [53] ZHOU C Z. Academic new media service method based on knowledge graph[C]//Proceedings of the 2nd International Conference on Engineering Management and Information Science.[S. l.]: EAI Press, 2023: 1-9. [54] THUSHARA M G, MOWNIKA T, MANGAMURU R. A comparative study on different keyword extraction algorithms[C]//Proceedings of the 3rd International Conference on Computing Methodologies and Communication (ICCMC). Washington D.C., USA: IEEE Press, 2019: 969-973. [55] ZHANG M X, LI X M, YUE S B, et al. An empirical study of TextRank for keyword extraction[J]. IEEE Access, 2020, 8: 178849-178858. [56] 陈曦, 梅广, 张金金, 等. 融合知识图谱和协同过滤的学生成绩预测方法[J]. 计算机应用, 2020, 40(2): 595-601. CHEN X, MEI G, ZHANG J J, et al. Student grade prediction method based on knowledge graph and collaborative filtering[J]. Journal of Computer Applications, 2020, 40(2): 595-601. (in Chinese) [57] 张水晶, 陈建峡, 吴歆韵. 一种句袋注意力远程监督关系抽取方法[J]. 计算机应用与软件, 2022, 39(8): 193-203. ZHANG S J, CHEN J X, WU X Y. A novel distant supervision relation extraction approach based on sentence bag attention[J]. Computer Applications and Software, 2022, 39(8): 193-203. (in Chinese) [58] LI H, GONG R R, ZHONG Z M, et al. Research on personalized learning path planning model based on knowledge network[J]. Neural Computing and Applications, 2023, 35(12): 8809-8821. [59] MA X Q, XU T, WANG F S, et al. Research on the construction of curriculum knowledge graph based on GMM[C]//Proceedings of the 3rd International Conference on Computer Information and Big Data Applications. Wuhan, China: VDE Press, 2022: 1-4. [60] CHEN P H, LU Y, ZHENG V W, et al. An automatic knowledge graph construction system for K-12 education[C]//Proceedings of the 5th Annual ACM Conference on Learning at Scale. New York, USA: ACM Press, 2018: 1-4. [61] XU T, MA X, WANG F, et al. Construction and application of subject knowledge graph for basic education[EB/OL].[2024-02-11]. https://ceur-ws.org/Vol-3206/paper09.pdf#:~:text=This%20paper%20proposes%20to%20use%20SVM%20to%20identify,design%20and%20implement%20a%20subject%20Knowledge%20Graph%20system. [62] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Philadelphia, USA: Association for Computational Linguistics, 2012: 1201-1211. [63] SUNDERMEYER M, SCHLÜTER R, NEY H. LSTM neural networks for language modeling[EB/OL].[2024-02-11]. https://www.isca-archive.org/interspeech_2012/sundermeyer12_interspeech.pdf. [64] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2024-02-11]. https://arxiv.org/abs/1412.3555v1. [65] CHEN P H, LU Y, ZHENG V W, et al. KnowEdu: a system to construct knowledge graph for education[J]. IEEE Access, 2018, 6: 31553-31563. [66] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: ACL Press, 2016: 207-212. [67] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2024-02-11]. https://arxiv.org/abs/1508.01991v1. [68] LIU S, YANG H, LI J Y, et al. Preliminary study on the knowledge graph construction of Chinese ancient history and culture[J]. Information, 2020, 11(4): 186. [69] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL].[2024-02-11]. https://arxiv.org/abs/1810.04805v2. [70] WANG J N. Math-KG: construction and applications of mathematical knowledge graph[EB/OL].[2024-02-11]. https://arxiv.org/abs/2205.03772v1. [71] AIN Q U, CHATTI M A, BAKAR K G C, et al. Automatic construction of educational knowledge graphs: a word embedding-based approach[J]. Information, 2023, 14(10): 526. [72] SU Y, ZHANG Y. Automatic construction of subject knowledge graph based on educational big data[C]//Proceedings of the 3rd International Conference on Big Data and Education. New York, USA: ACM Press, 2020: 30-36. [73] LI N, SHEN Q, SONG R, et al. MEduKG: a deep-learning-based approach for multi-modal educational knowledge graph construction[J]. Information, 2022, 13(2): 91. [74] YANG P R, WANG H J, HUANG Y Z, et al. LMKG: a large-scale and multi-source medical knowledge graph for intelligent medicine applications[J]. Knowledge-Based Systems, 2024, 284: 111323. [75] WANG S, SUN X, LI X, et al. GPT-NER: named entity recognition via large language models[EB/OL].[2024-02-11]. https://arxiv.org/abs/2304.10428. [76] LI J Y, LI H, PAN Z, et al. Prompting ChatGPT in MNER: enhanced multimodal named entity recognition with auxiliary refined knowledge[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg, USA: ACL Press, 2023: 1-16. [77] 寇嘉颖, 赵卫东, 柳先辉. 融合关系传递信息的双图文档级关系抽取方法[J]. 计算机科学, 2023, 50(12): 229-235. KOU J Y, ZHAO W D, LIU X H. Method of document level relation extraction based on fusion of relational transfer information using double graph[J]. Computer Science, 2023, 50(12): 229-235. (in Chinese) [78] 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. LI D M, ZHANG Y, LI D Y, et al. Review of entity relation extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. (in Chinese) [79] ZHANG N Y, XU X, TAO L K, et al. DeepKE: a deep learning based knowledge extraction toolkit for knowledge base population[EB/OL].[2024-02-11]. https://arxiv.org/abs/2201.03335v6. [80] MANNING C, SURDEANU M, BAUER J, et al. The Stanford CoreNLP natural language processing toolkit[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg, USA: ACL Press, 2014: 55-60. [81] ETZIONI O, FADER A, CHRISTENSEN J, et al. Open information extraction: the second generation[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2011: 3-10. [82] SUCHANEK F M, SOZIO M, WEIKUM G. SOFIE: a self-organizing framework for information extraction[C]//Proceedings of the 18th International Conference on World Wide Web. New York, USA: ACM Press, 2009: 631-640. [83] SCHMITZ M, SODERLAND S, BART R, et al. Open language learning for information extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Philadelphia, USA: ACL Press, 2012: 523-534. [84] LI G, WANG H, LIU H. Knowledge graph construction for computer networking course group in secondary vocational school based on multi-source heterogeneous data[C]//Proceedings of the 12th International Conference on Information Technology in Medicine and Education (ITME). Washington D.C., USA: IEEE Press, 2022: 99-103. [85] JIANG P, LU S Q, GU Z Y, et al. Construction of guidance graph in blended learning based on knowledge point extraction[C]//Proceedings of the IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference. Washington D.C., USA: IEEE Press, 2023: 1751-1755. [86] QIN Y H, CAO H, XUE L Y. Research and application of knowledge graph in teaching: take the database course as an example[J]. Journal of Physics: Conference Series, 2020, 1607(1): 012127. [87] QIAO L, YIN C T, CHEN H, et al. Automated construction of course knowledge graph based on China MOOC platform[C]//Proceedings of the IEEE International Conference on Engineering, Technology and Education. Washington D.C., USA: IEEE Press, 2019: 1-7. [88] 王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法、实践与应用[M]. 北京: 电子工业出版社, 2019. WANG H F, QI G L, CHEN H J. Knowledge graph[M]. Beijing: Publishing House of Electronics Industry, 2019. (in Chinese) [89] LÜ Z H, YI K X, ZHOU W J, et al. A review of the knowledge extraction technology in knowledge graph[C]//Proceedings of the 41st Chinese Control Conference (CCC). Washington D.C., USA: IEEE Press, 2022: 4211-4218. [90] SONG Z R, WAN L. Research of Chinese relation extraction based on BERT[C]//Proceedings of the IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). Washington D.C., USA: IEEE Press, 2023: 841-845. [91] XIA X Q, LI X C, CHU H P, et al. Research on knowledge extraction in knowledge graph construction[C]//Proceedings of the 3rd International Conference on Computer Vision and Data Mining (ICCVDM).[S. l.]: SPIE Press, 2023: 391-401. [92] LI Y, QIU J C, GUI S J, et al. Analytics 2.0 for precision education driven by knowledge map[C]//Proceedings of the IEEE Frontiers in Education Conference (FIE). Washington D.C., USA: IEEE Press, 2022: 1-5. [93] 刘森淼. 面向知识图谱的关系抽取算法研究[D]. 南京: 南京理工大学, 2021. LIU S M. Research on relation extraction algorithm for knowledge map[D]. Nanjing: Nanjing University of Science and Technology, 2021. (in Chinese) [94] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [95] SUN Q, ZHANG K, LÜ L S, et al. Joint extraction of entities and overlapping relations by improved graph convolutional networks[J]. Applied Intelligence, 2022, 52(5): 5212-5224. [96] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Philadelphia, USA: ACL Press, 2009: 1003-1011. [97] ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2015: 1753-1762. [98] LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: ACL Press, 2016: 2124-2133. [99] CHEN Y, CHEN Z Y. Research on the key technology of course ontology construction[J]. Journal of Physics: Conference Series, 2022, 2330(1): 012012. [100] KANNAN A V, FRADKIN D, AKROTIRIANAKIS I, et al. Multimodal knowledge graph for deep learning papers and code[C]//Proceedings of the 29th ACM International Conference on Information[WT《Times New Roman》]& Knowledge Management. New York, USA: ACM Press, 2020: 3417-3420. [101] 刘昀抒, 申彦明, 齐恒, 等. 基于层次结构图的多跳知识图谱问答模型[J]. 计算机工程, 2024, 50(1): 101-109. LIU Y S, SHEN Y M, QI H, et al. Multi-hop knowledge base question answering model based on hierarchical structure graph[J]. Computer Engineering, 2024, 50(1): 101-109. (in Chinese) [102] XU G W, JIA G Y, SHI L, et al. Personalized course recommendation system fusing with knowledge graph and collaborative filtering[J]. Computational Intelligence and Neuroscience, 2021(1): 9590502. [103] ZHANG X M, LIU S, WANG H Y. Personalized learning path recommendation for E-learning based on knowledge graph and graph convolutional network[J]. International Journal of Software Engineering and Knowledge Engineering, 2023, 33(1): 109-131. [104] 吴昊, 徐行健, 孟繁军. 课程资源的融合知识图谱多任务特征推荐算法[J]. 计算机工程与应用, 2021, 57(21): 132-139. WU H, XU X J, MENG F J. Knowledge graph-assisted multi-task feature-based course recommendation algorithm[J]. Computer Engineering and Applications, 2021, 57(21): 132-139. (in Chinese) [105] 赵玲朗, 范佳荣, 赵一婷, 等. 基于知识图谱的学习者画像模型设计与应用——以"高中物理"课程为例[J]. 现代教育技术, 2021, 31(2): 95-101. ZHAO L L, FAN J R, ZHAO Y T, et al. The design and application of the learners’ portrait model based on knowledge mapping—taking the "high school physics" course as an example[J]. Modern Educational Technology, 2021, 31(2): 95-101. (in Chinese) [106] DENG L Q, XU X S, REN Y. Analysis and prediction of network connection behavior anomaly based on knowledge graph features[C]//Proceedings of the 3rd International Seminar on Artificial Intelligence, Networking, and Information Technology (AINIT).[S. l.]: SPIE Press, 2023: 309-316. [107] 王春雷, 王肖, 刘凯. 多模态知识图谱表示学习综述[J]. 计算机应用, 2024, 44(1): 1-15. WANG C L, WANG X, LIU K. Multimodal knowledge graph representation learning: a review[J]. Journal of Computer Applications, 2024, 44(1): 1-15. (in Chinese) [108] FETTACH Y, GHOGHO M, BENATALLAH B. Knowledge graphs in education and employability: a survey on applications and techniques[J]. IEEE Access, 2022, 10: 80174-80183. [109] ZHENG L Q, LONG M L, CHEN B D, et al. Promoting knowledge elaboration, socially shared regulation, and group performance in collaborative learning: an automated assessment and feedback approach based on knowledge graphs[J]. International Journal of Educational Technology in Higher Education, 2023, 20(1): 46. [110] WANG C, XU S S. Construction of the evaluation index system of physical education teaching in colleges and universities based on scientific knowledge graph[J]. Mobile Information Systems, 2024, 20(1): 1-13. [111] 郑庆华, 刘欢, 龚铁梁, 等. 大数据知识工程发展现状及展望[J]. 中国工程科学, 2023, 25(2): 208-220. ZHENG Q H, LIU H, GONG T L, et al. Development and prospect of big data knowledge engineering[J]. Strategic Study of CAE, 2023, 25(2): 208-220. (in Chinese) [112] YU Y Q, LIAO M H, WU J H, et al. TextHawk: exploring efficient fine-grained perception of multimodal large language models[EB/OL].[2024-02-11]. https://arxiv.org/abs/2404.09204v1. [113] YE Q H, XU H Y, YE J B, et al. mPLUG-Owl2: revolutionizing multi-modal large language model with modality collaboration[EB/OL].[2024-02-11]. https://arxiv.org/abs/2311.04257v2. [114] 胡斌皓, 张建朋, 陈鸿昶. 基于生成式对抗网络和正类无标签学习的知识图谱补全算法[J]. 计算机科学, 2024, 51(1): 310-315. HU B H, ZHANG J P, CHEN H C. Knowledge graph completion algorithm based on generative adversarial network and positive and unlabeled learning[J]. Computer Science, 2024, 51(1): 310-315. (in Chinese) [115] 马坤, 安敬民, 李冠宇. 动态聚合实体和关系上下文的知识图谱补全[J]. 计算机工程, 2023, 49(8): 77-84, 95. MA K, AN J M, LI G Y. Knowledge graph completion with dynamically aggregating context of entity and relation[J]. Computer Engineering, 2023, 49(8): 77-84, 95. (in Chinese) [116] LIU Y B, WEN F, ZONG T, et al. Research on joint extraction method of entity and relation triples based on hierarchical cascade labeling[J]. IEEE Access, 2022, 11: 9789-9798. [117] POPOVIC N, FÄRBER M. Few-shot document-level relation extraction[EB/OL].[2024-02-11]. https://arxiv.org/abs/2205.02048v2. [118] WEI X, CUI X Y, CHENG N, et al. ChatIE: zero-shot information extraction via chatting with ChatGPT[EB/OL].[2024-02-11]. https://arxiv.org/abs/2302.10205v2. [119] CARTA S, GIULIANI A, PIANO L, et al. Iterative zero-shot LLM prompting for knowledge graph construction[EB/OL].[2024-02-11]. https://arxiv.org/abs/2307.01128v1. |