1 |
王厚博. 面向自动驾驶的立体匹配算法[D]. 哈尔滨: 东北林业大学, 2022.
|
|
WANG H B. Stereo matching algorithm for autonomous driving[D]. Harbin: Northeast Forestry University, 2022. (in Chinese)
|
2 |
刘明国. 面向机器人导航的立体视觉及目标检测技术研究[D]. 南京: 南京理工大学, 2017.
|
|
LIU M G. Research on stereo vision and target detection technology for robot navigation[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
|
3 |
周施. 三维重建中立体匹配算法研究[D]. 沈阳: 东北大学, 2020.
|
|
ZHOU S. Research on stereo matching algorithm in 3D reconstruction[D]. Shenyang: Northeastern University, 2020. (in Chinese)
|
4 |
韩昊, 李参海, 丘晓枫. 基于神经网络密集匹配的资源三号DSM提取. 遥感信息, 2022, 37 (3): 101- 108.
|
|
HAN H , LI C H , QIU X F . ZY-3 DSM extraction based on neural network dense matching. Remote Sensing Information, 2022, 37 (3): 101- 108.
|
5 |
陈华, 王立军, 刘刚. 立体匹配算法研究综述. 高技术通讯, 2020, 30 (2): 157- 165.
|
|
CHEN H , WANG L J , LIU G . A survey of stereo matching algorithms. Chinese High Technology Letters, 2020, 30 (2): 157- 165.
|
6 |
谢小鹏, 欧永东, 王银安, 等. 基于融合代价和分段优化的立体匹配算法. 激光与光电子学进展, 2021, 58 (12): 1215004.
|
|
XIE X P , OU Y D , WANG Y A , et al. Stereo matching algorithm based on fusion cost and segmentation optimization. Laser and Optoelectronics Progress, 2021, 58 (12): 1215004.
|
7 |
LU C H , UCHIYAMA H , THOMAS D , et al. Sparse cost volume for efficient stereo matching. Remote Sensing, 2018, 10 (11): 1844.
doi: 10.3390/rs10111844
|
8 |
陈映光, 周佩, 朱江平, 等. 基于改进Census变换和自适应支持域的立体匹配. 激光与光电子学进展, 2021, 58 (14): 1433002.
|
|
CHEN Y G , ZHOU P , ZHU J P , et al. Stereo matching based on improved Census transformation and adaptive support region. Laser and Optoelectronics Progress, 2021, 58 (14): 1433002.
|
9 |
OKUTOMI M, KANADE T. A multiple-baseline stereo[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 63-69.
|
10 |
范海瑞, 杨帆, 潘旭冉, 等. 一种改进Census变换与梯度融合的立体匹配算法. 光学学报, 2018, 38 (2): 267- 277.
|
|
FAN H R , YANG F , PAN X R , et al. Stereo matching algorithm for improved Census transform and gradient fusion. Acta Optica Sinica, 2018, 38 (2): 267- 277.
|
11 |
HOSNI A , BLEYER M , GELAUTZ M . Secrets of adaptive support weight techniques for local stereo matching. Computer Vision and Image Understanding, 2013, 117 (6): 620- 632.
doi: 10.1016/j.cviu.2013.01.007
|
12 |
MEI X, SUN X, ZHOU M C, et al. On building an accurate stereo matching system on graphics hardware[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2011: 467-474.
|
13 |
LIU H , WANG R , XIA Y P , et al. Improved cost computation and adaptive shape guided filter for local stereo matching of low texture stereo images. Applied Sciences, 2020, 10 (5): 1869.
doi: 10.3390/app10051869
|
14 |
董磊. 基于自适应窗口的PatchMatch立体匹配算法研究及其应用[D]. 武汉: 武汉轻工大学, 2022.
|
|
DONG L. Research and application of PatchMatch stereo matching algorithm based on adaptive window[D]. Wuhan: Wuhan Polytechnic University, 2022. (in Chinese)
|
15 |
文斌, 朱晗. 基于自适应权重的立体匹配优化算法. 计算机工程, 2021, 47 (4): 268- 276.
doi: 10.19678/j.issn.1000-3428.0056991
|
|
WEN B , ZHU H . Stereo matching optimization algorithm based on adaptive weights. Computer Engineering, 2021, 47 (4): 268- 276.
doi: 10.19678/j.issn.1000-3428.0056991
|
16 |
YOON K J , KWEON I S . Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (4): 650- 656.
doi: 10.1109/TPAMI.2006.70
|
17 |
ZHANG K , LU J B , LAFRUIT G . Cross-based local stereo matching using orthogonal integral images. IEEE Transactions on Circuits and Systems for Video Technology, 19 (7): 1073- 1079.
doi: 10.1109/TCSVT.2009.2020478
|
18 |
HAMZAH R A, KADMIN A F, ABD GANI S F. A modelling of stereo matching algorithm for machine vision application[C]//Proceedings of the 4th International Conference on Mechanical, Manufacturing and Plant Engineering. Washington D. C., USA: IEEE Press, 2018: 499-508.
|
19 |
YANG Q X . Hardware-efficient bilateral filtering for stereo matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (5): 1026- 1032.
doi: 10.1109/TPAMI.2013.186
|
20 |
卢昂, 储珺, 冷璐. 基于高低频特征增强的图像去雾. 计算机工程, 2023, 49 (8): 174- 181.
doi: 10.19678/j.issn.1000-3428.0064826
|
|
LU A , CHU J , LENG L . Image dehazing based on high-frequency and low-frequency feature enhancement. Computer Engineering, 2023, 49 (8): 174- 181.
doi: 10.19678/j.issn.1000-3428.0064826
|
21 |
|
22 |
HIRSCHMÜLLER H , INNOCENT P R , GARIBALDI J . Real-time correlation-based stereo vision with reduced border errors. International Journal of Computer Vision, 2002, 47 (1): 229- 246.
|
23 |
HAMZAH R A , IBRAHIM H , ABU HASSAN A H . Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. Journal of Visual Communication and Image Representation, 2017, 42, 145- 160.
|
24 |
HAMZAH R A, IBRAHIM H, ABU HASSAN A H. Stereo matching algorithm for 3D surface reconstruction based on triangulation principle[C]//Proceedings of the 1st International Conference on Information Technology, Information Systems and Electrical Engineering. Washington D. C., USA: IEEE Press, 2016: 119-124.
|
25 |
KONG L Y , ZHU J P , YING S C . Stereo matching based on guidance image and adaptive support region. Acta Optica Sinica, 2020, 40 (9): 0915001.
|
26 |
LIU J, JI S P. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6050-6059.
|