1 |
罗会兰, 曹立京. 基于多维动态拓扑学习图卷积的骨架动作识别. 电子学报, 2024, 52 (3): 991- 1001.
|
|
LUO H L , CAO L J . Skeleton action recognition based on multidimensional dynamic topology learning graph volume product. Acta Electronica Sinica, 2024, 52 (3): 991- 1001.
|
2 |
建中华, 南静, 刘鑫, 等. 基于时空张量融合的人体骨架行为自适应识别方法. 仪器仪表学报, 2023, 44 (6): 74- 85.
|
|
JIAN Z H , NAN J , LIU X , et al. Adaptive recognition method of human skeleton action with spatial-temporal tensor fusion. Chinese Journal of Scientific Instrument, 2023, 44 (6): 74- 85.
|
3 |
曹毅, 吴伟官, 李平, 等. 基于时空特征增强图卷积网络的骨架行为识别. 电子与信息学报, 2023, 45 (8): 3022- 3031.
|
|
CAO Y , WU W G , LI P , et al. Skeleton action recognition based on spatio-temporal feature enhanced graph convolutional network. Journal of Electronics & Information Technology, 2023, 45 (8): 3022- 3031.
|
4 |
刘宽, 奚小冰, 周明东. 基于自适应多尺度图卷积网络的骨架动作识别. 计算机工程, 2023, 49 (10): 264- 271.
doi: 10.19678/j.issn.1000-3428.0065882
|
|
LIU K , XI X B , ZHOU M D . Skeleton action recognition based on adaptive multi-scale graph convolutional network. Computer Engineering, 2023, 49 (10): 264- 271.
doi: 10.19678/j.issn.1000-3428.0065882
|
5 |
宋涛, 杨鑫, 马婧华, 等. 骨架自适应与关节增强图卷积网络的行为识别. 华中科技大学学报(自然科学版), 2022, 50 (3): 74-79, 93.
|
|
SONG T , YANG X , MA J H , et al. Action recognition based on skeleton adaptation and joint enhancement graph convolutional network. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50 (3): 74-79, 93.
|
6 |
赫磊, 邵展鹏, 张剑华, 等. 基于深度学习的行为识别算法综述. 计算机科学, 2020, 47 (S1): 139- 147.
|
|
HE L , SHAO Z P , ZHANG J H , et al. Review of deep learning-based action recognition algorithms. Computer Science, 2020, 47 (S1): 139- 147.
|
7 |
YAN S J , XIONG Y J , LIN D H . Spatial temporal graph convolutional networks for skeleton-based action recognition. Artificial Intelligence, 2018, 32 (1): 7444- 7452.
|
8 |
THAKKAR K C, NARAYANAN P J. Part-based graph convolutional network for action recognition: supplementary material[EB/OL]. [2023-11-10]. https://arxiv.org/abs/1809.04983.
|
9 |
LI M S, CHEN S H, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3590-3598.
|
10 |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 12018-12027.
|
11 |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 13339-13348.
|
12 |
CHI H G, HA M H, CHI S, et al. InfoGCN: representation learning for human skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 20154-20164.
|
13 |
DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3559-3568.
|
14 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
15 |
SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1010-1019
|
16 |
LIU J , SHAHROUDY A , PEREZ M , et al. NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (10): 2684- 2701.
doi: 10.1109/TPAMI.2019.2916873
|
17 |
WANG J, NIE X H, XIA Y, et al. Cross-view action modeling, learning, and recognition[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2014: 2649-2656.
|
18 |
ZHANG P F, LAN C L, ZENG W J, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1109-1118.
|
19 |
BARADEL F, WOLF C, MILLE J, et al. Glimpse clouds: human activity recognition from unstructured feature points[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 469-478.
|
20 |
CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 180-189.
|
21 |
LI F J , ZHU A C , LI J J , et al. Frequency-driven channel attention-augmented full-scale temporal modeling network for skeleton-based action recognition. Knowledge-Based Systems, 2022, 256, 109854.
doi: 10.1016/j.knosys.2022.109854
|
22 |
LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 140-149.
|
23 |
SONG Y F , ZHANG Z , SHAN C , et al. Constructing stronger and faster baselines for skeleton-based action recognition. IEEE Transactions Pattern Anal Mach Intell, 2023, 45 (2): 1474- 1488.
doi: 10.1109/TPAMI.2022.3157033
|
24 |
CHEN T L, ZHOU D S, WANG J, et al. Learning multi-granular spatio-temporal graph network for skeleton-based action recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4334-4342.
|
25 |
|
26 |
|
27 |
WANG S Q, ZHANG Y J, ZHAO M H, et al. Skeleton-based action recognition via temporal-channel aggregation[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2205.15936.
|
28 |
TRIVEDI N, SARVADEVABHATLA R K. PSUMNet: unified modality part streams are all you need forEfficient pose-based action recognition[C]//Proceedings of ECCV'22. Berlin, Germany: Springer, 2023: 211-227.
|
29 |
LIU J F , WANG X S , WANG C , et al. Temporal decoupling graph convolutional network for skeleton-based gesture recognition. IEEE Transactions on Multimedia, 2023, 26, 811- 823.
|
30 |
CHENG Q , CHENG J , REN Z L , et al. Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition. Pattern Analysis and Applications, 2023, 26 (3): 1303- 1315.
doi: 10.1007/s10044-023-01156-w
|
31 |
ZHANG P , LAN C , XING J , et al. View adaptive neural networks for high performance skeleton-based human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (8): 1963- 1978.
doi: 10.1109/TPAMI.2019.2896631
|
32 |
|
33 |
SI C Y, CHEN W T, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 1227-1236.
|
34 |
YU B X B , LIU Y , ZHANG X , et al. MMNet: a model-based multimodal network for human action recognition in RGB-D videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (3): 3522- 3538.
doi: 10.1109/TPAMI.2022.3177813
|
35 |
CHENG K, ZHANG Y F, CAO C Q, et al. Decoupling GCN with DropGraph module for skeleton-based action recognition[C]//Proceedings of ECCV'20. Berlin, Germany: Springer, 2020: 536-553.
|
36 |
DAS S , DAI R , YANG D , et al. VPN++: rethinking video-pose embeddings for understanding activities of daily living. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (12): 9703- 9717.
doi: 10.1109/TPAMI.2021.3127885
|
37 |
XU K L, YE F F, ZHONG Q Y, et al. Topology-aware convolutional neural network for efficient skeleton-based action recognition[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2112.04178.
|