1 |
闫晓东, 王羿钦, 黄硕, 等. 藏文文本摘要数据集. 中国科学数据, 2022, 7 (2): 43- 49.
|
|
YAN X D , WANG Y Q , HUANG S , et al. A dataset of Tibetan text summarization. China Scientific Data, 2022, 7 (2): 43- 49.
|
2 |
安见才让. 藏文搜索引擎系统中网页自动摘要的研究. 微处理机, 2010, 31 (5): 77- 80.
|
|
Anjiancairang . Research on automatic abstract of web document summarization of Tibetan search engine. Microprocessors, 2010, 31 (5): 77- 80.
|
3 |
南奎娘若, 安见才让. 基于敏感信息的藏文文本摘要提取的研究. 网络安全技术与应用, 2016 (4): 58- 59.
doi: 10.3969/j.issn.1009-6833.2016.04.039
|
|
Nankuininagruo , Anjiancairang . Research on Tibetan text abstraction based on sensitive information. Network Security Technology & Application, 2016 (4): 58- 59.
doi: 10.3969/j.issn.1009-6833.2016.04.039
|
4 |
李维, 闫晓东, 解晓庆. 基于改进TextRank的藏文抽取式摘要生成. 中文信息学报, 2020, 34 (9): 36- 43.
doi: 10.3969/j.issn.1003-0077.2020.09.006
|
|
LI W , YAN X D , XIE X Q . An improved TextRank for Tibetan summarization. Journal of Chinese Information Processing, 2020, 34 (9): 36- 43.
doi: 10.3969/j.issn.1003-0077.2020.09.006
|
5 |
吕晶. 基于深度学习的藏文抽取式摘要研究[D]. 兰州: 兰州大学, 2022. LÜ J.
|
|
Research on Tibetan abstraction based on deep learning[D]. Lanzhou: Lanzhou University, 2022. (in Chinese)
|
6 |
HU B T, CHEN Q C, ZHU F Z. LCSTS: a large scale Chinese short text summarization dataset[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1967-1972.
|
7 |
KAMEZAWA H, NISHIDA N, SHIMIZU N, et al. RNSum: a large-scale dataset for automatic release note generation via commit logs summarization[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2022: 8718-8728.
|
8 |
WU H, ZHAN M J, TAN H C, et al. VCSUM: a versatile Chinese meeting summarization dataset[M]//ROGERS A, BOYD-GRABER J, OKAZAKI N. Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg, USA: Association for Computational Linguistics, 2023: 6065-6079.
|
9 |
MENG R, THAKER K, ZHANG L, et al. Bringing structure into summaries: a faceted summarization dataset for long scientific documents[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg, USA: Association for Computational Linguistics, 2021: 1080-1089.
|
10 |
VERMA Y, JANGRA A, VERMA R, et al. Large scale multi-lingual multi-modal summarization dataset[C]//Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2023: 3620-3632.
|
11 |
LIU X J, ZANG S N, ZHANG C, et al. CLTS+: a new Chinese long text summarization dataset with abstractive summaries[EB/OL]. [2023-06-09]. https://arxiv.org/abs/2206.04253.
|
12 |
ZHONG M, YIN D, YU T, et al. QMSum: a new benchmark for query-based multi-domain meeting summarization[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2021: 5905-5921.
|
13 |
FABBRI A, LI I, SHE T W, et al. Multi-news: a large-scale multi-document summarization dataset and abstractive hierarchical model[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 1074-1084.
|
14 |
才智杰, 孙茂松, 才让卓玛. 一种基于向量模型的藏文字拼写检查方法. 中文信息学报, 2018, 32 (9): 47- 55.
doi: 10.3969/j.issn.1003-0077.2018.09.009
|
|
CAI Z J , SUN M S , Cairangzhuoma . Vector based spelling check for Tibetan characters. Journal of Chinese Information Processing, 2018, 32 (9): 47- 55.
doi: 10.3969/j.issn.1003-0077.2018.09.009
|
15 |
色差甲. 基于神经网络的藏文律诗生成研究[D]. 西宁: 青海师范大学, 2018.
|
|
Sechajia. Research on the generation of Tibetan rhyme based on neural network[D]. Xining: Qinghai Normal University, 2018. (in Chinese)
|
16 |
才智杰. 藏文自动分词系统中紧缩词的识别. 中文信息学报, 2009, 23 (1): 35-37, 43.
|
|
CAI Z J . Identification of abbreviated word in Tibetan word segmentation. Journal of Chinese Information Processing, 2009, 23 (1): 35-37, 43.
|
17 |
NALLAPATI R, ZHOU B, SANTOS C D, et al. Abstractive text summarization using Seq-to-Seq RNNs and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Stroudsburg, USA: Association for Computational Linguistics, 2016: 280-290.
|
18 |
LIN X, HAN S, JOTY S. Straight to the gradient: learning to use novel tokens for neural text generation[C]//Proceedings of the 38th International Conference on Machine Learning. [S. l. ]: PMLR Press, 2021: 6642-6653.
|
19 |
SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2017: 1073-1083.
|
20 |
RAVAUT M, JOTY S, CHEN N. SummaReranker: a multi-task mixture-of-experts re-ranking framework for abstractive summarization[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2022: 4504-4524.
|
21 |
VARAB D, XU Y M. Abstractive summarizers are excellent extractive summarizers[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: Association for Computational Linguistics, 2023: 330-339.
|
22 |
KWON J, KAMIGAITO H, OKUMURA M. Abstractive document summarization with summary-length prediction[M]//BOUAMOR H, PINO J, BALI K. Findings of the Association for Computational Linguistics: EACL 2023. Stroudsburg, USA: Association for Computational Linguistics, 2023: 618-624.
|
23 |
LAM K, DOAN T, PHAM K, et al. Abstractive text summarization using the BRIO training paradigm[M]//ROGERS A, BOYD-GRABER J, OKAZAKI N. Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg, USA: Association for Computational Linguistics, 2023: 92-99.
|
24 |
倪海清, 刘丹, 史梦雨. 基于语义感知的中文短文本摘要生成模型. 计算机科学, 2020, 47 (6): 74- 78.
|
|
NI H Q , LIU D , SHI M Y . Chinese short text summarization generation model based on semantic-aware. Computer Science, 2020, 47 (6): 74- 78.
|
25 |
LIANG X N, BIAN C, WU S Z, et al. Towards modeling role-aware centrality for dialogue summarization[C]//Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg, USA: Association for Computational Linguistics, 2022: 43-50.
|
26 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: [s. n. ], 2015: 1-10.
|
27 |
LIN C. ROUGE: A package for automatic evaluation of summaries[C]//Proceedings of the 2004 Workshop on Text Summarization Branches Out. Stroudsburg, USA: Association for Computational Linguistics, 2004: 74-81.
|