1 |
张欢, 史峰. 基于流量预测的高速公路收费员动态配置模型. 交通运输系统工程与信息, 2009, 9(5): 71- 76.
|
|
ZHANG H, SHI F. Dynamic equilibrium model of expressway toll collector based on traffic flow prediction. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(5): 71- 76.
|
2 |
丁栋, 朱云龙, 库涛, 等. 基于影响模型的短时交通流预测方法. 计算机工程, 2012, 38(10): 164- 167.
doi: 10.3969/j.issn.1000-3428.2012.10.050
|
|
DING D, ZHU Y L, KU T, et al. Short-term traffic flow forecasting method based on influence model. Computer Engineering, 2012, 38(10): 164- 167.
doi: 10.3969/j.issn.1000-3428.2012.10.050
|
3 |
孙玉砚, 孙利民, 朱红松, 等. 基于车牌识别系统车辆轨迹的行为异常检测. 计算机研究与发展, 2015, 52(8): 1921- 1929.
|
|
SUN Y Y, SUN L M, ZHU H S, et al. Activity anomaly detection based on vehicle trajectory of automatic number plate recognition system. Journal of Computer Research and Development, 2015, 52(8): 1921- 1929.
|
4 |
杨龙海, 徐洪, 张春. 基于GPS数据的高速公路车辆异常行为检测. 重庆交通大学学报(自然科学版), 2018, 37(5): 97- 103.
|
|
YANG L H, XU H, ZHANG C. Vehicle abnormal behavior detection on freeway based on global positioning system data. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(5): 97- 103.
|
5 |
蒋刚毅, 郁梅, 叶锡恩, 等. 一种基于视觉的车辆跟踪及交通流量参数估计新方法. 电路与系统学报, 2001, 6(4): 69-73, 83.
|
|
JIANG G Y, YU M, YE X E, et al. New method of vision based vehicle tracking and traffic parameter estimation. Journal of Circuits and Systems, 2001, 6(4): 69-73, 83.
|
6 |
赖见辉, 王扬, 罗甜甜, 等. 基于YOLO_v3的侧视视频交通流量统计方法与验证. 公路交通科技, 2021, 38(1): 135- 142.
|
|
LAI J H, WANG Y, LUO T T, et al. A YOLO_v3-based road-side video traffic volume counting method and verification. Journal of Highway and Transportation Research and Development, 2021, 38(1): 135- 142.
|
7 |
李俊彦, 宋焕生, 张朝阳, 等. 基于视频的多目标车辆跟踪及轨迹优化. 计算机工程与应用, 2020, 56(5): 194- 199.
|
|
LI J Y, SONG H S, ZHANG Z Y, et al. Multi-object vehicle tracking and trajectory optimization based on video. Computer Engineering and Applications, 2020, 56(5): 194- 199.
|
8 |
SONG H S, LIANG H X, LI H Y, et al. Vision-based vehicle detection and counting system using deep learning in highway scenes. European Transport Research Review, 2019, 11, 51.
doi: 10.1186/s12544-019-0390-4
|
9 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49(4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J, GENG L L, WANG P. Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49(4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
10 |
LUVIZON D C, NASSU B T, MINETTO R. A video-based system for vehicle speed measurement in urban roadways. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1393- 1404.
|
11 |
邹国建, 赖子良, 李晔. 基于时空注意力网络的动态高速路网交通速度预测. 计算机工程, 2023, 49(2): 303- 313.
doi: 10.19678/j.issn.1000-3428.0063777
|
|
ZOU G J, LAI Z L, LI Y. Traffic speed prediction based on spatio-temporal attention network for dynamic expressway network. Computer Engineering, 2023, 49(2): 303- 313.
doi: 10.19678/j.issn.1000-3428.0063777
|
12 |
CHAKRABORTY P, ADU-GYAMFI Y O, PODDAR S, et al. Traffic congestion detection from camera images using deep convolution neural networks. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(45): 222- 231.
doi: 10.1177/0361198118777631
|
13 |
LIN Y, WANG R F, ZHU R, et al. The short-term exit traffic prediction of a toll station based on LSTM. Cham: Springer, 2020.
|
14 |
WANG P, ZHAO J D, GAO Y, et al. Lane work-schedule of toll station based on queuing theory and PSO-LSTM model. IEEE Access, 2020, 8, 84434- 84443.
doi: 10.1109/ACCESS.2020.2992070
|
15 |
PETROVI AĆG A, NIKOLI AĆG M, BUGARI AĆG U, et al. Controlling highway toll stations using deep learning, queuing theory, and differential evolution. Engineering Applications of Artificial Intelligence, 2023, 119, 105683.
doi: 10.1016/j.engappai.2022.105683
|
16 |
KE X, SHI L F, GUO W Z, et al. Multi-dimensional traffic congestion detection based on fusion of visual features and convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2157- 2170.
|
17 |
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610- 621.
|
18 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. D., USA: IEEE Press, 2016: 779-788.
|
19 |
|
20 |
REID D. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843- 854.
doi: 10.1109/TAC.1979.1102177
|
21 |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. D., USA: IEEE Press, 2017: 3645-3649.
|
22 |
LUCAS B D, KANADE T, LUCAS B D, et al. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 1981: 674-679.
|
23 |
SHI J B, TOMASI. Good features to track[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. D., USA: IEEE Press, 1994: 593-600.
|
24 |
QUEEN J M. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability. Washington D. D., USA: IEEE Press, 1967: 281-297.
|
25 |
ARTHUR D, VASSILVITSKⅡ S, ARTHUR D, et al. K-means++[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New York, USA: ACM Press, 2007: 1027-1035.
|