1 |
刘祖均, 何明, 马子玉, 等. 基于分布式一致性的无人机编队控制方法. 计算机工程与应用, 2020, 56(23): 146- 152.
|
|
LIU Z J, HE M, MA Z Y, et al. UAV formation control method based on distributed consistency. Computer Engineering and Applications, 2020, 56(23): 146- 152.
|
2 |
唐余, 薛智爽, 刘小芳, 等. 基于故障观测器的多无人机姿态一致性控制. 计算机工程, 2021, 47(3): 311- 320.
doi: 10.19678/j.issn.1000-3428.0057342
|
|
TANG Y, XUE Z S, LIU X F, et al. Attitude consistency control of multiple UAVs based on fault observer. Computer Engineering, 2021, 47(3): 311- 320.
doi: 10.19678/j.issn.1000-3428.0057342
|
3 |
DONG X W, YU B C, SHI Z Y, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340- 348.
doi: 10.1109/TCST.2014.2314460
|
4 |
ZHU S Y, CHEN C L, LI W S, et al. Distributed optimal consensus filter for target tracking in heterogeneous sensor networks. IEEE Transactions on Cybernetics, 2013, 43(6): 1963- 1976.
doi: 10.1109/TSMCB.2012.2236647
|
5 |
张甜甜, 尚丽辉. 基于智能体异质影响的观点一致性控制研究. 小型微型计算机系统, 2024, 45(5): 1069- 1075.
|
|
ZHANG T T, SHANG L H. Research and control on opinion consistency based on heterogeneous influence of agents. Journal of Chinese Computer Systems, 2024, 45(5): 1069- 1075.
|
6 |
FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465- 1476.
doi: 10.1109/TAC.2004.834433
|
7 |
HAO H, BAROOAH P. Stability and robustness of large platoons of vehicles with double-integrator models and nearest neighbor interaction. International Journal of Robust and Nonlinear Control, 2013, 23(18): 2097- 2122.
doi: 10.1002/rnc.2872
|
8 |
STEPHENSON K, ZELEN M. Rethinking centrality: methods and examples. Social Networks, 1989, 11(1): 1- 37.
doi: 10.1016/0378-8733(89)90016-6
|
9 |
CHUNG F. Spectral graph theory. Providence, USA: American Mathematical Society, 1996.
|
10 |
KORNISS G. Synchronization in weighted uncorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(5): 051121.
doi: 10.1103/PhysRevE.75.051121
|
11 |
XU W, WU B, ZHANG Z, et al. Coherence scaling of noisy second-order scale-free consensus networks. IEEE Transactions on Cybernetics, 2021, 52(7): 5923- 5934.
URL
|
12 |
YI Y H, ZHANG Z Z, PATTERSON S. Scale-free loopy structure is resistant to noise in consensus dynamics in complex networks. IEEE Transactions on Cybernetics, 2020, 50(1): 190- 200.
doi: 10.1109/TCYB.2018.2868124
|
13 |
SUMMERS T, SHAMES I, LYGEROS J, et al. Topology design for optimal network coherence[C]//Proceedings of the European Control Conference (ECC). Washington D.C., USA: IEEE Press, 2015: 575-580.
|
14 |
李达权, 孙伟刚. 中心节点距离可控的加权树状网络一致性分析. 杭州电子科技大学学报(自然科学版), 2024, 44(1): 92- 96.
|
|
LI D Q, SUN W G. Coherence analysis of weighted treelike networks with controlled distance between two hub nodes. Journal of Hangzhou Dianzi University (Natural Sciences), 2024, 44(1): 92- 96.
|
15 |
ZHA Q B, HE X, ZHAN M, et al. Managing consensus in balanced networks based on opinion and trust/distrust evolutions. Information Sciences, 2023, 643, 119223.
doi: 10.1016/j.ins.2023.119223
|
16 |
WANG J Y, DENG X M, GUO J H, et al. Resilient consensus control for multi-agent systems: a comparative survey. Sensors, 2023, 23(6): 2904.
doi: 10.3390/s23062904
|
17 |
AMIRKHANI A, BARSHOOI A H. Consensus in multi-agent systems: a review. Artificial Intelligence Review, 2022, 55(5): 3897- 3935.
doi: 10.1007/s10462-021-10097-x
|
18 |
HUSSEIN Z, SALAMA M A, EL-RAHMAN S A. Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms. Cybersecurity, 2023, 6(1): 30.
doi: 10.1186/s42400-023-00163-y
|
19 |
BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics. Physics Reports, 2006, 424(4/5): 175- 308.
URL
|
20 |
BARAB & #38;#38;#38;#193;SI A L, ALBERT R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509- 512.
doi: 10.1126/science.286.5439.509
|
21 |
BARRAT A, BARTHÉLEMY M, PASTOR-SATORRAS R, et al. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(11): 3747- 3752.
URL
|
22 |
BARRAT A, BARTHÉLEMY M, VESPIGNANI A. Weighted evolving networks: coupling topology and weight dynamics. Physical Review Letters, 2004, 92(22): 228701.
doi: 10.1103/PhysRevLett.92.228701
|
23 |
ZHANG Y C, ZHANG Z Z, ZHOU S G, et al. Deterministic weighted scale-free small-world networks. Physica A: Statistical Mechanics and Its Applications, 2010, 389(16): 3316- 3324.
doi: 10.1016/j.physa.2010.04.003
|
24 |
盛益彬, 章忠志. 基于加权无标度的伪分形网络研究. 计算机工程, 2019, 45(1): 303-307, 314.
doi: 10.19678/j.issn.1000-3428.0049583
|
|
SHENG Y B, ZHANG Z Z. Research on pseudo-fractal network based on weighted scale-free. Computer Engineering, 2019, 45(1): 303-307, 314.
doi: 10.19678/j.issn.1000-3428.0049583
|
25 |
CHEN Y, YUAN Z, GAO L, et al. Optimizing search processes with stochastic resetting on the pseudofractal scale-free Web. Physical Review E, 2023, 108(6): 064109.
doi: 10.1103/PhysRevE.108.064109
|
26 |
ZHOU X T, ZHANG Z Z. Edge domination number and the number of minimum edge dominating sets in pseudofractal scale-free Web and sierpiński gasket. Fractals, 2021, 29(7): 2150209.
doi: 10.1142/S0218348X21502091
|
27 |
XIE Z X, WANG Y C, XU W Y, et al. Combinatorial properties for a class of simplicial complexes extended from pseudo-fractal scale-free Web. Fractals, 2023, 31(3): 2350022.
doi: 10.1142/S0218348X23500226
|
28 |
TIAN Y G. Reverse order laws for the generalized inverses of multiple matrix products. Linear Algebra and Its Applications, 1994, 211, 85- 100.
doi: 10.1016/0024-3795(94)90084-1
|
29 |
LIU Q. The resistance distance and Kirchhoff index on quadrilateral graph and pentagonal graph. IEEE Access, 2019, 7, 36617- 36622.
doi: 10.1109/ACCESS.2019.2902012
|
30 |
SABER R O, MURRAY R M. Consensus protocols for networks of dynamic agents[C]//Proceedings of the 2003 American Control Conference. Washington D.C., USA: IEEE Press, 2003: 951-956.
|
31 |
OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520- 1533.
doi: 10.1109/TAC.2004.834113
|
32 |
KLEIN D J, RANDI & #38;#38;#38;#262; M. Resistance distance. Journal of Mathematical Chemistry, 1993, 12(1): 81- 95.
doi: 10.1007/BF01164627
|
33 |
BAPAT R. Resistance distance in graphs. Mathematics Student, 1999, 68(1/2/3/4): 87- 98.
|
34 |
KLEIN D J. Resistance-distance sum rules. Croatica Chemica Acta, 2002, 75(2): 633- 649.
URL
|
35 |
TETALI P. Random walks and the effective resistance of networks. Journal of Theoretical Probability, 1991, 4, 101- 109.
doi: 10.1007/BF01046996
|
36 |
CHEN H Y. Random walks and the effective resistance sum rules. Discrete Applied Mathematics, 2010, 158(15): 1691- 1700.
doi: 10.1016/j.dam.2010.05.020
|
37 |
CHEN H Y, ZHANG F J. Resistance distance and the normalized Laplacian spectrum. Discrete Applied Mathematics, 2007, 155(5): 654- 661.
doi: 10.1016/j.dam.2006.09.008
|
38 |
GUTMAN I, FENG L, YU G. Degree resistance distance of unicyclic graphs. Transactions on Combinatorics, 2012, 1(2): 27- 40.
URL
|