1 |
ZHAO J , XIE X J , XU X , et al. Multi-view learning overview: recent progress and new challenges. Information Fusion, 2017, 38 (C): 43- 54.
|
2 |
FUTSCHIK M E , CARLISLE B . Noise-robust soft clustering of gene expression time-course data. Journal of Bioinformatics and Computational Biology, 2005, 3 (4): 965- 988.
doi: 10.1142/S0219720005001375
|
3 |
FU L L , LIN P F , VASILAKOS A V , et al. An overview of recent multi-view clustering. Neurocomputing, 2020, 402, 148- 161.
doi: 10.1016/j.neucom.2020.02.104
|
4 |
SONG J , GUO Y , GAO L , et al. From deterministic to generative: multimodal stochastic RNNs for video captioning. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30 (10): 3047- 3058.
|
5 |
CHAO G , SUN S , BI J . A survey on multiview clustering. IEEE Transactions on Artificial Intelligence, 2021, 2 (2): 146- 168.
doi: 10.1109/TAI.2021.3065894
|
6 |
赵翠娜, 杨有龙. 基于自表示和投影映射的不完整多视图聚类. 吉林大学学报(理学版), 2024, 62 (2): 331- 338.
|
|
ZHAO C N , YANG Y L . Incomplete multi-view clustering based on self-representation and projection mapping. Journal of Jilin University (Science Edition), 2024, 62 (2): 331- 338.
|
7 |
刘思慧, 高全学, 宋伟, 等. 基于加权张量低秩约束的多视图谱聚类. 计算机工程, 2024, 50 (1): 129- 137.
doi: 10.19678/j.issn.1000-3428.0068270
|
|
LIU S H , GAO Q X , SONG W , et al. Multiview spectral clustering based on weighted tensor low-rank constraint. Computer Engineering, 2024, 50 (1): 129- 137.
doi: 10.19678/j.issn.1000-3428.0068270
|
8 |
DU Y F , LU G F , JI G Y . Robust and optimal neighborhood graph learning for multi-view clustering. Information Sciences, 2023, 631, 429- 448.
doi: 10.1016/j.ins.2023.02.089
|
9 |
王丽娟, 邢津萍, 尹明, 等. 基于一致性图的权重自适应多视角谱聚类算法. 计算机工程, 2024, 50 (2): 122- 131.
doi: 10.19678/j.issn.1000-3428.0066433
|
|
WANG L J , XING J P , YIN M , et al. Weight adaptive multi-view spectral clustering algorithm based on consistent graphs. Computer Engineering, 2024, 50 (2): 122- 131.
doi: 10.19678/j.issn.1000-3428.0066433
|
10 |
陈曼笙, 蔡晓莎, 林家祺, 等. 张量学习诱导的多视图谱聚类. 计算机学报, 2024, 47 (1): 52- 68.
|
|
WANG C D , CHEN M S , CAI X S , et al. Tensor learning induced multi-view spectral clustering. Chinese Journal of Computers, 2024, 47 (1): 52- 68.
|
11 |
YUN Y , LI J , GAO Q X , et al. Low-rank discrete multi-view spectral clustering. Neural Networks, 2023, 166, 137- 147.
doi: 10.1016/j.neunet.2023.06.038
|
12 |
CHEN Z , WU X J , XU T , et al. Fast self-guided multi-view subspace clustering. IEEE Transactions on Image Process, 2023, 32, 6514- 6525.
doi: 10.1109/TIP.2023.3261746
|
13 |
刘浩翰, 杜嘉欣, 李建伏. 两级联合融合的多视图子空间聚类改进算法. 计算机应用与软件, 2023, 40 (12): 299- 304.
|
|
LIU H H , DU J X , LI J F . Improved multi view subspace clustering algorithm based on two level joint fusion. Computer Applications and Software, 2023, 40 (12): 299- 304.
|
14 |
SU C , YUAN H L , LAI L L , et al. Anchor-based multi-view subspace clustering with graph learning. Neurocomputing, 2023, 547, 126320.
|
15 |
LU H , GAO Q X , ZHANG X D , et al. A multi-view clustering framework via integrating k-means and graph-cut. Neurocomputing, 2022, 501, 609- 617.
|
16 |
刘洪基. 基于混沌PSO的大数据智能加权K均值聚类算法. 计算机应用与软件, 2022, 39 (4): 311- 319.
|
|
LIU H J . Intelligent weighted K-means clustering algorithm for big data based on chaos PSO. Computer Applications and Software, 2022, 39 (4): 311- 319.
|
17 |
YU M . Regularized k-means clustering for multi-view data. Journal of Physics: Conference Series, 2022, 2381 (1): 012036.
|
18 |
ZHENG X , TANG C , LIU X W , et al. Multi-view clustering via matrix factorization assisted k-means. Neurocomputing, 2023, 534, 45- 54.
|
19 |
BICKEL S, SCHEFFER T.Multi-view clustering[C]//Proceedings of ICDM’04. Washington D. C., USA: IEEE Press, 2004: 19-26.
|
20 |
CAI X, NIE F, HUANG H. Multi-view k-means clustering on big data[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2013: 1-10.
|
21 |
XU J L, HAN J W, NIE F P. Discriminatively embedded k-means for multi-view clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE Press, 2016: 5356-5364.
|
22 |
XU J , HAN J , NIE F , et al. Re-weighted discriminatively embedded k-means for multi-view clustering. IEEE Transactions on Image Process, 2017, 26 (6): 3016- 3027.
|
23 |
KRIEGEL H P , KRÖGER P , ZIMEK A . Clustering high-dimensional data. ACM Transactions on Knowledge Discovery from Data, 2009, 3 (1): 1- 58.
|
24 |
KHAN G A , HU J , LI T R , et al. Multi-view low rank sparse representation method for three-way clustering. International Journal of Machine Learning and Cybernetics, 2022, 13 (1): 233- 253.
|
25 |
SHEN H T , LIU L C , YANG Y , et al. Exploiting subspace relation in semantic labels for cross-modal hashing. IEEE Transactions on Knowledge and Data Engineering, 2020, 33 (10): 3351- 3365.
|
26 |
ZHOU Y M , TIAN L , ZHU C , et al. Video coding optimization for virtual reality 360-degree source. IEEE Journal of Selected Topics in Signal Processing, 2019, 14 (1): 118- 129.
|
27 |
YANG Y, SHEN H T, MA Z, et al. l2, 1-norm regularized discriminative feature selection for unsupervised learning[C]//Proceedings of International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2011: 1-10.
|
28 |
DING C, HE X F, SIMON H D. Nonnegative Lagrangian relaxation of k-means and spectral clustering[C]//Proceedings of ECML 2005. Berlin, Germany: Springer, 2005: 530-538.
|
29 |
DING C H Q , LI T , JORDAN M I . Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 32 (1): 45- 55.
|
30 |
JIANG G Q , PENG J J , WANG H B , et al. Tensorial multi-view clustering via low-rank constrained high-order graph learning. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (8): 5307- 5318.
|
31 |
ZHU X F , ZHANG S C , LI Y G , et al. Low-rank sparse subspace for spectral clustering. IEEE Transactions on Knowledge and Data Engineering, 2019, 31 (8): 1532- 1543.
|
32 |
DAUBECHIES I, DEVORE R, FORNASIER M, et al. Iteratively re-weighted least squares minimization: proof of faster than linear rate for sparse recovery[C]//Proceedings of the 42nd Annual Conference on Information Sciences and Systems. Princeton, USA: IEEE Press, 2008: 26-29.
|
33 |
CAI D , HE X , HAN J . Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (12): 1624- 1637.
|
34 |
VARSHAVSKY R, LINIAL M, HORN D. COMPACT: a comparative package for clustering assessment[C]//Proceedings of International Symposium on Parallel and Distributed Processing and Applications. Berlin, Germany: Springer, 2005: 159-167.
|
35 |
CHEN C , WANG Y , HU W B , et al. Robust multi-view k-means clustering with outlier removal. Knowledge-Based Systems, 2020, 210, 106518.
|
36 |
HAN J W , XU J L , NIE F P , et al. Multi-view k-means clustering with adaptive sparse memberships and weight allocation. IEEE Transactions on Knowledge and Data Engineering, 2020, 34 (2): 816- 827.
|
37 |
WANG H , YANG Y , LIU B . GMC: graph-based multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2019, 32 (6): 1116- 1129.
|
38 |
WINN J, JOJIC N.LOCUS: learning object classes with unsupervised segmentation[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2005: 756-763.
|
39 |
|