| 1 | VON LUXBURG U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17 (4): 395- 416.  doi: 10.1007/s11222-007-9033-z
 | 
																													
																							| 2 | NIE F P, XU D, TSANG I W, et al. Spectral embedded clustering[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2009: 1181-1186. | 
																													
																							| 3 | 孙静勇, 马福民. 基于邻域归属信息混合度量的粗糙K-means算法. 计算机工程, 2021, 47 (3): 109- 116.  URL
 | 
																													
																							|  | SUN J Y, MA F M. Rough K-means algorithm based on mixed measure of neighborhood partition information. Computer Engineering, 2021, 47 (3): 109- 116.  URL
 | 
																													
																							| 4 | LIU M S, WANG Y, SUN J, et al. Adaptive low-rank kernel block diagonal representation subspace clustering. Applied Intelligence, 2022, 52 (2): 2301- 2316.  doi: 10.1007/s10489-021-02396-1
 | 
																													
																							| 5 | SI X M, YIN Q Y, ZHAO X J, et al. Consistent and diverse multi-view subspace clustering with structure constraint. Pattern Recognition, 2022, 121, 108196.  doi: 10.1016/j.patcog.2021.108196
 | 
																													
																							| 6 | 江雨燕, 邵金, 李平. 融合自动权重学习的深度子空间聚类. 计算机工程, 2022, 48 (8): 77-84, 97.  URL
 | 
																													
																							|  | JIANG Y Y, SHAO J, LI P. Deep subspace clustering fused with auto-weight learning. Computer Engineering, 2022, 48 (8): 77-84, 97.  URL
 | 
																													
																							| 7 | AHMAD K G, HU J, LI T R, et al. Multi-view data clustering via non-negative matrix factorization with manifold regularization. International Journal of Machine Learning and Cybernetics, 2022, 13 (3): 677- 689.  doi: 10.1007/s13042-021-01307-7
 | 
																													
																							| 8 | LIU X Y, SONG P, SHENG C, et al. Robust multi-view non-negative matrix factorization for clustering. Digital Signal Processing, 2022, 123, 103447.  doi: 10.1016/j.dsp.2022.103447
 | 
																													
																							| 9 | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2020, 32 (6): 1116- 1129.  doi: 10.1109/TKDE.2019.2903810
 | 
																													
																							| 10 | MEI Y Y, REN Z W, WU B, et al. Robust graph-based multi-view clustering in latent embedding space. International Journal of Machine Learning and Cybernetics, 2022, 13 (2): 497- 508.  doi: 10.1007/s13042-021-01421-6
 | 
																													
																							| 11 | ZHAO X R, EVANS N, DUGELAY J L. A subspace co-training framework for multi-view clustering. Pattern Recognition Letters, 2014, 41, 73- 82.  doi: 10.1016/j.patrec.2013.12.003
 | 
																													
																							| 12 | LIU J L, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization[C]//Proceedings of 2013 SIAM International Conference on Data Mining. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2013: 252-260. | 
																													
																							| 13 | KUMAR A, RAI P, DAUMÉ H. Co-regularized multi-view spectral clustering[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2011: 1413-1421. | 
																													
																							| 14 | ZHAN K, ZHANG C Q, GUAN J P, et al. Graph learning for multiview clustering. IEEE Transactions on Cybernetics, 2018, 48 (10): 2887- 2895.  doi: 10.1109/TCYB.2017.2751646
 | 
																													
																							| 15 | DAI W Y, YANG Q, XUE G R, et al. Self-taught clustering[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 200-207. | 
																													
																							| 16 | DHILLON I S, MALLELA S, MODHA D S. Information-theoretic co-clustering[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D. C., USA: IEEE Press, 2003: 89-98. | 
																													
																							| 17 | JIANG W H, CHUNG F L. Transfer spectral clustering[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2012: 789-803. | 
																													
																							| 18 | FENG L, CAI L, LIU Y, et al. Multi-view spectral clustering via robust local subspace learning. Soft Computing, 2017, 21 (8): 1937- 1948.  doi: 10.1007/s00500-016-2120-3
 | 
																													
																							| 19 | HU Z X, NIE F P, WANG R, et al. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. Information Fusion, 2020, 55, 251- 259.  doi: 10.1016/j.inffus.2019.09.005
 | 
																													
																							| 20 | LI X L, ZHANG H, WANG R, et al. Multiview clustering: a scalable and parameter-free bipartite graph fusion method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (1): 330- 344.  doi: 10.1109/TPAMI.2020.3011148
 | 
																													
																							| 21 | LIANG Y W, HUANG D, WANG C D. Consistency meets inconsistency: a unified graph learning framework for multi-view clustering[C]//Proceedings of IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2019: 1204-1209. | 
																													
																							| 22 | NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint ℓ2, 1-norms minimization[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2010: 1813-821. | 
																													
																							| 23 | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3 (1): 1- 12. | 
																													
																							| 24 | MANTON J H. Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing, 2002, 50 (3): 635- 650.  doi: 10.1109/78.984753
 | 
																													
																							| 25 | HUANG J, NIE F P, HUANG H. A new simplex sparse learning model to measure data similarity for clustering[C]//Proceedings of the 24th International Conference on Artificial Intelligence. New York, USA: ACM Press, 2015: 3569-3575. | 
																													
																							| 26 | NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2001: 849-856. . | 
																													
																							| 27 | ZONG L L, ZHANG X C, LIU X Y, et al. Weighted multi-view spectral clustering based on spectral perturbation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA: ACM Press, 2018: 4621-4628. | 
																													
																							| 28 | HUANG H C, CHUANG Y Y, CHEN C S. Affinity aggregation for spectral clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 773-780. | 
																													
																							| 29 | KUMAR A, RAI P, DAUMÉ H. Co-regularized multi-view spectral clustering[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2011: 1413-1421. | 
																													
																							| 30 | ZHAN K, NIE F P, WANG J, et al. Multiview consensus graph clustering. IEEE Transactions on Image Processing, 2019, 28 (3): 1261- 1270.  doi: 10.1109/TIP.2018.2877335
 | 
																													
																							| 31 | STREHL A, GHOSH J. Cluster ensembles: a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 2003, 3 (3): 583- 617.  doi: 10.1162/153244303321897735
 |