Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (8): 151-159. doi: 10.19678/j.issn.1000-3428.0069336

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Sequence Recommendation with Fusion Transition Relation Regularization

FENG Yali1,*(), WEN Wen1, HAO Zhifeng2, CAI Ruichu1   

  1. 1. College of Computer, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    2. Shantou University, Shantou 515000, Guangdong, China
  • Received:2024-02-01 Revised:2024-04-01 Online:2025-08-15 Published:2025-08-15
  • Contact: FENG Yali

融合转移关系正则化的序列推荐

冯雅莉1,*(), 温雯1, 郝志峰2, 蔡瑞初1   

  1. 1. 广东工业大学计算机学院, 广东 广州 510006
    2. 汕头大学, 广东 汕头 515000
  • 通讯作者: 冯雅莉
  • 基金资助:
    广东省自然科学基金(2021A1515011965); 国家自然科学基金(61876043); 国家优秀青年科学基金(62122022); 国家重点研发计划(2021ZD0111501)

Abstract:

Sequential recommendation is a crucial task in recommendation systems for realizing personalized and dynamic recommendations by modeling users' sequential behaviors. However, in real-world scenarios, user-behavior data often exhibit a high degree of sparsity. Meanwhile, item transition relationships embedded within behavioral sequences vary depending on the item characteristics. Consequently, fully leveraging the collaborative relationships between users and items, while simultaneously capturing transition patterns among items, has emerged as a pivotal challenge in sequential recommendations. To address this issue, a joint matrix factorization method that incorporates transition relation regularization is proposed. This approach involves a joint decomposition of the user-item interaction matrix and the Markov transition matrix between items. By setting the item representation factors to be shared during the decomposition process, both collaborative and transition relationships are jointly captured, thereby alleviating the data sparsity problem associated with user behavior and enabling effective sequential recommendations. Experimental comparisons and analyses conducted on five publicly available datasets demonstrate that the proposed method outperforms existing state-of-the-art algorithms in terms of sequential recommendation.

Key words: sequential recommendation, transition relation, matrix factorization, regularization, data sparsity

摘要:

序列推荐是推荐系统中的一类重要任务, 其通过建模用户顺序行为来实现个性化、动态性的推荐。然而, 在现实环境中, 用户行为数据往往具有高度稀疏性, 同时行为序列中所包含的项目转移关系随项目特性而改变。因此, 如何充分利用用户-项目间的协同关系, 同时捕捉项目-项目间的转移规律, 成为序列推荐中至关重要的问题。针对这一问题, 提出一种融合转移关系正则化的联合矩阵分解方法。该方法通过对用户-项目交互矩阵和项目-项目间马尔可夫转移矩阵进行联合分解, 并在分解过程中设定项目表征因子共享, 共同捕捉协同关系和转移关系, 缓解用户行为数据的稀疏问题, 进而实现有效的序列推荐。在5个公开数据集上进行实验比较和分析, 结果表明, 该方法相比现有先进算法具有更好的序列推荐性能。

关键词: 序列推荐, 转移关系, 矩阵分解, 正则化, 数据稀疏