[1] KOSTKA J, OSWALD Y A, WATTENHOFER R. Word of mouth: rumor dissemination in social networks[C]//Proceedings of SIROCCO’08. Berlin, Germany: Springer, 2008: 185-196. [2] KURKA D B, GODOY A, VON ZUBEN F J. Online social network analysis: a survey of research applications in computer science[EB/OL].[2024-04-08]. https://arxiv.org/abs/1504.05655. [3] ZUBIAGA A, AKER A, BONTCHEVA K, et al. Detection and resolution of rumours in social media[J]. ACM Computing Surveys, 2019, 51(2): 1-36. [4] SHAH D, ZAMAN T. Rumors in a network: who’s the culprit?[J]. IEEE Transactions on Information Theory, 2011, 57(8): 5163-5181. [5] ZANG W Y, ZHANG P, ZHOU C, et al. Locating multiple sources in social networks under the SIR model: a divide-and-conquer approach[J]. Journal of Computational Science, 2015, 10: 278-287. [6] ZEJNILOVI AC'G S, GOMES J, SINOPOLI B. Network observability and localization of the source of diffusion based on a subset of nodes[C]//Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing. Washington D.C., USA: IEEE Press, 2013: 847-852. [7] ZHU K, CHEN Z, YING L. Catch’Em all: locating multiplediffusion sources in networks with partial observations[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 1676-1683. [8] ZHU K, YING L. A robust information source estimator with sparse observations[C]//Proceedings of the IEEE Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2014: 2211-2219. [9] WANG Z, WANG C K, PEI J S, et al. Multiple source detection without knowing the underlying propagation model[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 217-223. [10] DONG M, ZHENG B L, HUNG N Q V, et al. Multiple rumor source detection with graph convolutional networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 569-578. [11] EASLEY D A, KLEINBERG J M. Networks, crowds, and markets-reasoning about a highly connected world[J]. IEEE Technology and Society Magazine, 2013, 32(3): 10-30. [12] 吴杨, 吴国文, 张红, 等. 基于扩展传染病模型的谣言溯源[J]. 计算机与现代化, 2022(1): 113-119. WU Y, WU G W, ZHANG H, et al. Rumor source detection based on extended epidemic model[J]. Computer and Modernization, 2022(1): 113-119. (in Chinese) [13] GUO Q, ZHANG C, ZHANG H S, et al. IGCN: infected graph convolutional network based source identification[C]//Proceedings of the IEEE Global Communications Conference (GLOBECOM). Washington D.C., USA: IEEE Press, 2021: 1-6. [14] KARAMCHANDANI N, FRANCESCHETTI M. Rumor source detection under probabilistic sampling[C]//Proceedings of the IEEE International Symposium on Information Theory. Washington D.C., USA: IEEE Press, 2013: 2184-2188. [15] WANG Z X, DONG W X, ZHANG W Y, et al. Rumor source detection with multiple observations[J]. ACM SIGMETRICS Performance Evaluation Review, 2014, 42(1): 1-13. [16] 钱榕, 李鑫, 刘晓豫, 等. 考虑禁言机制的谣言传播模型[J]. 计算机工程, 2024, 50(8): 372-378. QIAN R, LI X, LIU X Y, et al. Rumor spreading model considering prohibition mechanism[J]. Computer Engineering, 2024, 50(8): 372-378. (in Chinese) [17] ALLEN L J S. Some discrete-time SI, SIR, and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124(1): 83-105. [18] ANDERSON R M, MAY R M. Infectious diseases of humans: dynamics and control[M]. New York, USA: Oxford University Press, 1991. [19] BONACICH P. Power and centrality: a family of measures[J]. American Journal of Sociology, 1987, 92(5): 1170-1182. [20] FIORITI V, CHINNICI M. Predicting the sources of an outbreak with a spectral technique[EB/OL].[2024-04-08]. https://arxiv.org/abs/1211.2333. [21] PRAKASH B A, VREEKEN J, FALOUTSOS C. Spotting culprits in epidemics: how many and which ones?[C]//Proceedings of the IEEE 12th International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2012: 11-20. [22] PRAKASH B A, VREEKEN J, FALOUTSOS C. Efficiently spotting the starting points of an epidemic in a large graph[J]. Knowledge and Information Systems, 2014, 38(1): 35-59. [23] ZHU K, YING L. Information source detection in the SIR model: a sample-path-based approach[J]. IEEE/ACM Transactions on Networking, 2016, 24(1): 408-421. [24] LOKHOV A Y, MÉZARD M, OHTA H, et al. Inferring the origin of an epidemic with a dynamic message-passing algorithm[J]. Physical Review E, 2014, 90: 012801. [25] LI L, ZHOU J Y, JIANG Y W, et al. Propagation source identification of infectious diseases with graph convolutional networks[J]. Journal of Biomedical Informatics, 2021, 116: 103720. [26] VELI AČG KOVI AC'G P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].[2024-04-08]. https://arxiv.org/abs/1211.2333. [27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5998-6008. [28] BRODY S, ALON U, YAHAV E. How attentive are graph attention networks?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 1-10. [29] 陈轶洲, 刘旭生, 孙林檀, 等. 基于图神经网络的社交网络影响力预测算法[J]. 南京大学学报(自然科学版), 2022, 58(3): 386-397. CHEN Y Z, LIU X S, SUN L T, et al. Social influence prediction with graph neural network[J]. Journal of Nanjing University (Natural Science), 2022, 58(3): 386-397. (in Chinese) [30] SHAH D, ZAMAN T. Rumor centrality[J]. ACM SIGMETRICS Performance Evaluation Review, 2012, 40(1): 199-210. [31] ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4): 452-473. [32] GLEISER P M, DANON L. Community structure in Jazz[J]. Advances in Complex Systems, 2003, 6(4): 565-573. [33] GUIMERÀ R, DANON L, DÍAZ-GUILERA A, et al. Self-similar community structure in a network of human interactions[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(2): 065103. [34] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].[2024-04-08]. https://arxiv.org/abs/1412.6980. |