[1] WU S W, SUN F, ZHANG W T, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2022, 55(5): 97. [2] 杨中金, 彭敦陆, 宋祎昕. GNRF: 基于关系融合的图神经网络推荐系统[J]. 小型微型计算机系统, 2024, 45(8): 1895-1900. YANG Z J, PENG D L, SONG Y X. GNRF: graph neural network recommendation system based on relation fusion[J]. Journal of Chinese Computer Systems, 2024, 45(8): 1895-1900. (in Chinese) [3] 谢后行. 基于图神经网络的协同过滤推荐算法的研究与应用[D]. 广州: 广东工业大学, 2022. XIE H X. Research and application of collaborative filtering recommendation algorithm based on graph neural network[J]. Guangzhou: Guangdong University of Technology, 2022. (in Chinese) [4] WU W, WANG C, SHEN D Z, et al. AFDGCF: adaptive feature de-correlation graph collaborative filtering for recommendations[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2024: 1242-1252. [5] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. [6] 谢娟英, 张建宇. 图卷积神经网络综述[J]. 陕西师范大学学报(自然科学版), 2024, 52(2): 89-101. XIE J Y, ZHANG J Y. The review of the graph convolutional neural networks[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2024, 52(2): 89-101. (in Chinese) [7] SARDELLITTI S, BARBAROSSA S, DI LORENZO P. On the graph Fourier transform for directed graphs[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 796-811. [8] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York,USA:ACM Press,2016: 3844-3852. [9] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York,USA:ACM Press,2017: 1025-1035. [10] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. New York,USA:ACM Press,2017: 2713-2726. [11] 张一恒, 王芹, 刁炜卿, 等. 基于Scrapy爬虫技术和图神经网络的生态旅游推荐技术[J]. 自动化与仪器仪表, 2024(2): 6-10. ZHANG Y H, WANG Q, DIAO W Q, et al. Ecotourism recommendation technology based on Scrapy crawler technology and graph neural network[J]. Automation & Instrumentation, 2024(2): 6-10. (in Chinese) [12] 邬硕, 汪海涛, 姜瑛, 等. 融合图神经网络与长短期偏好的序列推荐算法[J]. 信息技术, 2024, 48(2): 66-72. WU S, WANG H T, JIANG Y, et al. Sequence recommendation algorithm based on graph neural network and long short term preference[J]. Information Technology, 2024, 48(2): 66-72. (in Chinese) [13] 廖冬, 于海征. 融合物品关系的图神经网络推荐算法[J]. 计算机科学, 2023, 50(S2): 492-500. LIAO D, YU H Z. Graph neural network recommendation algorithm based on item relations[J]. Computer Science, 2023, 50(S2): 492-500. (in Chinese) [14] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2019: 165-174. [15] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2020: 639-648. [16] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York,USA:ACM Press,2018: 974-983. [17] SUN J N, ZHANG Y X, MA C, et al. Multi-graph convolution collaborative filtering[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C.,USA:IEEE Press,2020: 1306-1311. [18] WANG X, JIN H Y, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2020: 1001-1010. [19] SUN J N, ZHANG Y X, GUO W, et al. Neighbor interaction aware graph convolution networks for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2020: 1289-1298. [20] MA J X, ZHOU C, YANG H X, et al. Disentangled self-supervision in sequential recommenders[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York,USA:ACM Press,2020: 483-491. [21] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations. New York,USA:ACM Press,2018: 2920-2931. [22] LIU F, CHENG Z Y, ZHU L, et al. Interest-aware message-passing GCN for recommendation[C]//Proceedings of the Web Conference 2021. New York,USA:ACM Press,2021: 1296-1305. [23] QIU J Z, TANG J, MA H, et al. DeepInf: social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York,USA:ACM Press,2018: 2110-2119. [24] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. New York,USA:ACM Press,2015: 1-15. [25] WANG Y, ZHAO Y Y, ZHANG Y, et al. Collaboration-aware graph convolutional network for recommender systems[C]//Proceedings of the ACM Web Conference 2023. New York,USA:ACM Press,2023: 91-101. [26] YU J L, XIA X, CHEN T, et al. XSimGCL: towards extremely simple graph contrastive learning for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 913-926. [27] YUAN P, LI H J, FANG M Y, et al. Amplify graph learning for recommendation via sparsity completion[EB/OL].[2024-05-05]. https://arxiv.org/abs/2406.18984. [28] WANG X F, FUKUMOTO F, CUI J, et al. NFARec: a negative feedback-aware recommender model[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2024: 935-945. |