[1] 赵国朕, 宋金晶, 葛燕, 等. 基于生理大数据的情绪识别研究进展[J]. 计算机研究与发展, 2016, 53(1): 80-92. ZHAO G Z, SONG J J, GE Y, et al. Research progress on emotion recognition based on physiological big data[J]. Journal of Computer Research and Development, 2016, 53(1): 80-92. (in Chinese) [2] PAL S, MUKHOPADHYAY S, SURYADEVARA N. Development and progress in sensors and technologies for human emotion recognition[J]. Sensors (Basel), 2021, 21(16): 5554. [3] 权学良, 曾志刚, 蒋建华, 等. 基于生理信号的情感计算研究综述[J]. 自动化学报, 2021, 47(8): 16. QUAN X L, ZENG Z G, JIANG J H, et al. A review of affective computing research based on physiological signals[J]. Acta Automatica Sinica, 2021, 47(8): 16. (in Chinese) [4] 刘飞, 蔡厚德. 情绪生理机制研究的外周与中枢神经系统整合模型[J]. 心理科学进展, 2010, 18(4): 616-622. LIU F, CAI H D. An integrated model of peripheral and central nervous systems in the study of emotional physiological mechanisms[J]. Advances in Psychological Science, 2010, 18(4): 616-622. (in Chinese) [5] PACE-SCHOTT E F, AMOLE M C, AUE T, et al. Physiological feelings[J]. Neuroscience & Biobehavioral Reviews, 2019, 103: 267-304. [6] PETERS E M J, SCHEDLOWSKI M, WATZL C, et al. To stress or not to stress: brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2[J]. Neurobiology of Stress, 2021, 14: 100296. [7] SPETH J, VANCE N, CZAJKA A, et al. Deception detection and remote physiological monitoring: a dataset and baseline experimental results[C]//Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Shenzhen, China: IEEE Press, 2021: 1-8. [8] 李锦瑶, 杜肖兵, 朱志亮, 等. 脑电情绪识别的深度学习研究综述[J]. 软件学报, 2023, 34(1): 22. LI J Y, DU X B, ZHU Z L, et al. A review of deep learning research on EEG-based emotion recognition[J]. Journal of Software, 2023, 34(1): 22. (in Chinese) [9] 程梓. 基于心电信号CNN及双向GRU深度特征的集成学习情绪识别框架研究[D]. 广州: 华南理工大学, 2019. CHENG Z. Research on an ensemble learning framework for emotion recognition based on CNN and Bi-GRU deep features of ECG signals[D]. Guangzhou: South China University of Technology, 2019. (in Chinese) [10] LISOWSKA A, WILK S, PELEG M. Catching patient’s attention at the right time to help them undergo behavioural change: stress classification experiment from blood volume pulse[C]//Proceedings of International Conference on Artificial Intelligence in Medicine. Berlin, Germany: Springer International Publishing, 2021: 72-82. [11] KIPLI K, LATIP A A A, LIAS K, et al. GSR signals features extraction for emotion recognition[C]//Proceedings of International Conference on Trends in Electronics and Health Informatics. Singapore: Springer Nature Singapore, 2022: 329-338. [12] JOHN B. Pupil diameter as a measure of emotion and sickness in VR[C]//Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications. New York, USA: ACM, 2019: 1-3. [13] KINNER V L, KUCHINKE L, DIEROLF A M, et al. What our eyes tell us about feelings: tracking pupillary responses during emotion regulation processes[J]. Psychophysiology, 2017, 54(4): 508-518. [14] FERENCOVÁ N, VIŠ ANˇG OVCOVÁ Z, BONA OLEXOVÁ L, et al. Eye pupil—a window into central autonomic regulation via emotional/cognitive processing[J]. Physiological Research, 2021, 70(Suppl 4): 669-682. [15] FINKE J B, BEHRJE A, SCHÄCHINGER H. Acute stress enhances pupillary responses to erotic nudes: evidence for differential effects of sympathetic activation and cortisol[J]. Biological Psychology, 2018, 137: 73-82. [16] SCHUMANN A, KIETZER S, EBEL J, et al. Sympathetic and parasympathetic modulation of pupillary unrest[J]. Frontiers in Neuroscience, 2020, 14: 178. [17] WÖLLNER C, HAMMERSCHMIDT D, ALBRECHT H. Slow motion in films and video clips: Music influences perceived duration and emotion, autonomic physiological activation and pupillary responses[J]. PLoS One, 2018, 13(6): e0199161. [18] NAKAKOGA S, HIGASHI H, MURAMATSU J, et al. Asymmetrical characteristics of emotional responses to pictures and sounds: evidence from pupillometry[J]. PLoS One, 2020, 15(4): e0230775. [19] LEE C L, PEI W, LIN Y C, et al. Emotion detection based on pupil variation[J]. Healthcare (Basel), 2023, 11(3): 322. [20] KOSEL C, MICHEL S, SEIDEL T, et al. Exploring the dynamic interplay of cognitive load and emotional arousal by using multimodal measurements: correlation of pupil diameter and emotional arousal in emotionally engaging tasks[EB/OL].[2024-01-02]. https://arxiv.org/abs/2403.00366. [21] KOTANI J, NAKAO H, YAMADA I, et al. A novel method for measuring the pupil diameter and pupillary light reflex of healthy volunteers and patients with intracranial lesions using a newly developed pupilometer[J]. Frontiers in Medicine, 2021, 8: 598791. [22] RAITURKAR P, KLEINSMITH A, KEIL A, et al. Decoupling light reflex from pupillary dilation to measure emotional arousal in videos[C]//Proceedings of the ACM Symposium on Applied Perception. New York, USA: ACM, 2016: 89-96. [23] ZHENG L J, MOUNTSTEPHENS J, TEO J. Four-class emotion classification in virtual reality using pupillometry[J]. Journal of Big Data, 2020, 7(1): 43. [24] 余芳, 姚新旺, 杨艳茹, 等. 红光及蓝光刺激下正常人瞳孔直接对光反射的特点分析[J]. 中国实用医药, 2022, 17(23): 15-20. YU F, YAO X W, YANG Y R, et al. Analysis of the characteristics of direct pupillary light reflex in normal individuals under red and blue light stimulation[J]. China Practical Medicine, 2022, 17(23): 15-20. (in Chinese) [25] 孙瑞山, 张尧, 孙军亚. 驾驶舱灯光色温与视觉疲劳关系模拟试验研究[J]. 安全与环境学报, 2022, 22(2): 785-791. SUN R S, ZHANG Y, SUN J Y. Simulation study on the relationship between cockpit light color temperature and visual fatigue[J]. Journal of Safety and Environment, 2022, 22(2): 785-791. (in Chinese) [26] PICKENS T A, KHAN S P, BERLAU D J. White noise as a possible therapeutic option for children with ADHD[J]. Complementary Therapies in Medicine, 2019, 42: 151-155. [27] BAEZA A, YÁÑEZ D F. A note on some bounds between cubic spline interpolants depending on the boundary conditions: application to a monotonicity property[J]. Applied Numerical Mathematics, 2022, 181: 320-325. [28] KHODARAHMI M, MAIHAMI V. A review on Kalman filter models[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 727-747. [29] 吴叶丽, 行鸿彦, 李瑾, 等. 改进阈值函数的小波去噪算法[J]. 电子测量与仪器学报, 2022, 36(4): 9-16. WU Y L, XING H Y, LI J, et al. A wavelet denoising method based on an improved threshold function[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(4): 9-16. (in Chinese) [30] OSADCHIY A, KAMENEV A, SAHAROV V, et al. Signal processing algorithm based on discrete wavelet transform[J]. Designs, 2021, 5(3): 41. [31] TIAN C W, ZHENG M H, ZUO W M, et al. Multi-stage image denoising with the wavelet transform[J]. Pattern Recognition, 2023, 134: 109050. [32] HU H P, AO Y, YAN H C, et al. Signal denoising based on wavelet threshold denoising and optimized variational mode decomposition[J]. Journal of Sensors, 2021(Pt4): 5599096. [33] PIPERKOV P. WALSH functions and WALSH transform. mathematical foundations and some applications[J]. Innovative STEM Education, 2023, 5(1): 23-28. [34] 姜恩华. Walsh变换的一种快速并行算法[J]. 武汉大学学报(理学版), 2019, 65(6):576-581. JIANG E H. A fast parallel algorithm for Walsh transform[J]. Journal of Wuhan University (Natural Science Edition), 2019, 65(6): 576-581. (in Chinese) [35] RAHUL J, SORA M, SHARMA L. An overview on biomedical signal analysis[J]. International Journal of Recent Technology and Engineering, 2019, 7(5): 206-209. [36] Dankel S J, Loenneke J P. Effect sizes for paired data should use the change score variability rather than the pre-test variability[J]. The Journal of Strength & Conditioning Research, 2021, 35(6): 1773-1778. [37] DEL BARRIO E, INOUZHE H, MATRÁN C. On approximate validation of models: a Kolmogorov-Smirnov-based approach[J]. TEST, 2020, 29(4): 938-965. [38] ASADI S. Evolutionary fuzzification of RIPPER for regression: case study of stock prediction[J]. Neurocomputing, 2019, 331: 121-137. [39] BANSAL M, GOYAL A, CHOUDHARY A. A comparative analysis of k-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning[J]. Decision Analytics Journal, 2022, 3: 100071. [40] 蔡俊民, 梁正友, 孙宇, 等. 基于可变形三维图卷积的轻量级点云分类研究[J]. 计算机工程, 2024, 50(9): 255-265. CAI J M, LIANG Z Y, SUN Y, et al. Research on lightweight point cloud classification based on deformable 3D graph convolution[J]. Computer Engineering, 2024, 50(9): 255-265. (in Chinese) [41] MAO A, MOHRI M, ZHONG Y. Cross-entropy loss functions: theoretical analysis and applications[C]//Proceedings of International Conference on Machine Learning.[S. l.]: PMLR, 2023: 23803-23828. [42] MARTÍNEZ-CAMBLOR P, PÉREZ-FERNÁNDEZ S, DÍAZ-COTO S. The area under the generalized receiver-operating characteristic curve[J]. The International Journal of Biostatistics, 2022, 18(1): 293-306. |