1 |
MEHDIYEV N , LAHANN J , EMRICH A , et al. Time series classification using deep learning for process planning: a case from the process industry. Procedia Computer Science, 2017, 114, 242- 249.
doi: 10.1016/j.procs.2017.09.066
|
2 |
DONG F , CHEN S , DEMACHI K , et al. Attention-based time series analysis for data-driven anomaly detection in nuclear power plants. Nuclear Engineering and Design, 2023, 404, 112161.
doi: 10.1016/j.nucengdes.2023.112161
|
3 |
ROCHETEAU E, LIÒ P, HYLAND S. Predicting length of stay in the intensive care unit with temporal pointwise convolutional networks[EB/OL]. [2023-11-25]. https://arxiv.org/abs/2006.16109v1.
|
4 |
田红丽, 崔姚, 闫会强. 融合图卷积和卷积自注意力的股票预测方法. 计算机工程与应用, 2024, 60 (4): 192- 199.
|
|
TIAN H L , CUI Y , YAN H Q . Stock prediction method combining graph convolution and convolution self-attention. Computer Engineering and Applications, 2024, 60 (4): 192- 199.
|
5 |
GROSSI E , VALBUSA G , BUSCEMA M . Detection of an autism EEG signature from only two EEG channels through features extraction and advanced machine learning analysis. Clinical EEG and Neuroscience, 2021, 52 (5): 330- 337.
doi: 10.1177/1550059420982424
|
6 |
詹熙, 黎维, 潘志松. Multi-shapelet: 一种基于shapelet的多变量时间序列分类方法. 数据采集与处理, 2023, 38 (2): 386- 400.
|
|
ZHAN X , LI W , PAN Z S . Multi-shapelet: a multivariate time series classification method based on shapelet. Journal of Data Acquisition and Processing, 2023, 38 (2): 386- 400.
|
7 |
|
8 |
LI G, CHOI B, XU J, et al. ShapeNet: a shapelet-neural network approach for multivariate time series classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California, USA: AAAI Press, 2021: 8375-8383.
|
9 |
|
10 |
SHOKOOHI-YEKTA M, WANG J, KEOGH E. On the non-trivial generalization of dynamic time warping to the multi-dimensional case[C]//Proceedings of the 2015 SIAM International Conference on Data Mining (SDM). Philadelphia, USA: Society for Industrial and Applied Mathematics, 2015: 289-297.
|
11 |
SHOKOOHI-YEKTA M , HU B , JIN H X , et al. Generalizing DTW to the multi-dimensional case requires an adaptive approach. Data Mining and Knowledge Discovery, 2017, 31 (1): 1- 31.
doi: 10.1007/s10618-016-0455-0
|
12 |
沈彧, 陈庆奎. 面向时间序列相似性的疾病风险评估模型. 小型微型计算机系统, 2022, 43 (9): 1869- 1876.
|
|
SHEN Y , CHEN Q K . Disease risk assessment model based on similarity measurement of multivariate time series. Journal of Chinese Computer Systems, 2022, 43 (9): 1869- 1876.
|
13 |
ZHENG Y , LIU Q , CHEN E H , et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Frontiers of Computer Science, 2016, 10 (1): 96- 112.
doi: 10.1007/s11704-015-4478-2
|
14 |
KARIM F , MAJUMDAR S , DARABI H , et al. Multivariate LSTM-FCNs for time series classification. Neural Networks, 2019, 116, 237- 245.
doi: 10.1016/j.neunet.2019.04.014
|
15 |
|
16 |
ZHANG X C, GAO Y F, LIN J, et al. TapNet: multivariate time series classification with attentional prototypical network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. California, USA: AAAI Press, 2020: 6845-6852.
|
17 |
霍纬纲, 侯振环. 基于多尺度卷积自注意力的多维时间序列预测. 计算机工程与设计, 2023, 44 (4): 1250- 1258.
|
|
HUO W G , HOU Z H . Multivariate time series forecasting using multi-scale convolutional self-attention. Computer Engineering and Design, 2023, 44 (4): 1250- 1258.
|
18 |
刘杭, 殷歆, 陈杰, 等. 基于混合网络模型的多维时间序列预测. 计算机工程, 2023, 49 (1): 121- 129.
doi: 10.19678/j.issn.1000-3428.0063718
|
|
LIU H , YIN X , CHEN J , et al. Multi-dimensional time-series prediction based on hybrid network models. Computer Engineering, 2023, 49 (1): 121- 129.
doi: 10.19678/j.issn.1000-3428.0063718
|
19 |
王慧强, 陈楚皓, 吕宏武, 等. 基于双向稀疏Transformer的多变量时序分类模型. 小型微型计算机系统, 2024, 45 (3): 555- 561.
|
|
WANG H Q , CHEN C H , LV H W , et al. Multivariate time series classification model based on bidirectional sparse Transformer. Journal of Chinese Computer Systems, 2024, 45 (3): 555- 561.
|
20 |
|
21 |
DEMPSTER A , PETITJEAN F , WEBB G I . ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 2020, 34 (5): 1454- 1495.
doi: 10.1007/s10618-020-00701-z
|
22 |
MUNIR M , SIDDIQUI S A , DENGEL A , et al. DeepAnT: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access, 2019, 7, 1991- 2005.
doi: 10.1109/ACCESS.2018.2886457
|
23 |
ZHOU Y J , XU K , HE F , et al. Application of time series data anomaly detection based on deep learning in continuous casting process. ISIJ International, 2022, 62 (4): 689- 698.
URL
|
24 |
MA M , SUN C , CHEN X F . Deep coupling autoencoder for fault diagnosis with multimodal sensory data. IEEE Transactions on Industrial Informatics, 2018, 14 (3): 1137- 1145.
URL
|
25 |
CHOWDHURY R R, ZHANG X, SHANG J, et al. TARNet: task-aware reconstruction for time-series Transformer[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 212-220.
|
26 |
邓昕, 刘朝晖, 欧阳燕, 等. 基于CNN CBAM-BiGRU Attention的加密恶意流量识别. 计算机工程, 2023, 49 (11): 178- 186.
doi: 10.19678/j.issn.1000-3428.0066558
|
|
DENG X , LIU Z H , OU Y Y , et al. Encrypted malicious traffic identification based on CNN CBAM-BiGRU attention. Computer Engineering, 2023, 49 (11): 178- 186.
doi: 10.19678/j.issn.1000-3428.0066558
|
27 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2007: 6000-66010.
|
28 |
|
29 |
|
30 |
LENG Z Q, TAN M X, LIU C X, et al. PolyLoss: a polynomial expansion perspective of classification loss functions[EB/OL]. [2023-11-25]. https://arxiv.org/abs/2204.12511.
|
31 |
DEMPSTER A, SCHMIDT D F, WEBB G I. MiniRocket: a very fast (almost) deterministic transform for time series classification[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2021: 248-257.
|
32 |
GAO G, GAO Q, YANG X, et al. A reinforcement learning-informed pattern mining framework for multivariate time series classification[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. California, USA: IJCAI, 2022: 2994-3000.
|
33 |
李守华, 李俊. 汽车用高强度IF钢的研究进展. 上海金属, 2007, 5, 66- 70.
|
|
LI S H , LI J . Progress in research of high strength IF steel for automotive applications. Shanghai Metals, 2007, 5, 66- 70.
|