[1] MUKHERJEE D, GUPTA K, CHANG L H, et al. A survey of robot learning strategies for human-robot collaboration in industrial settings[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102231. [2] HOELLER D, RUDIN N, SAKO D, et al. ANYmal parkour: learning agile navigation for quadrupedal robots[J]. Science Robotics, 2024, 9(88): 7566. [3] NING G C, ZHANG X R, LIAO H E. Autonomic robotic ultrasound imaging system based on reinforcement learning[J]. IEEE Transactions on Bio-Medical Engineering, 2021, 68(9): 2787-2797. [4] KAUFMANN E, BAUERSFELD L, LOQUERCIO A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620(7976): 982-987. [5] LEE J, BJELONIC M, RESKE A, et al. Learning robust autonomous navigation and locomotion for wheeled-legged robots[J]. Science Robotics, 2024, 9(89): 9641. [6] ROVEDA L, MASKANI J, FRANCESCHI P, et al. Model-based reinforcement learning variable impedance control for human-robot collaboration[J]. Journal of Intelligent & Robotic Systems, 2020, 100(2): 417-433. [7] 马旭淼, 徐德. 机器人增量学习研究综述[J]. 控制与决策, 2024, 39(5): 1409-1423. MA X M, XU D. Incremental learning for robots: a survey[J]. Control and Decision, 2024, 39(5): 1409-1423. (in Chinese) [8] 潘海南, 陈柏良, 黄开宏, 等. 基于深度强化学习的履带机器人摆臂控制方法[J]. 系统仿真学报, 2024, 36(2): 405-414. PAN H N, CHEN B L, HUANG K H, et al. Flipper control method for tracked robot based on deep reinforcement learning[J]. Journal of System Simulation, 2024, 36(2): 405-414. (in Chinese) [9] NGUYEN H P D, NGUYEN D D. Drone application in smart cities: the general overview of security vulnerabilities and countermeasures for data communication[M]. Berlin, Germany: Springer International Publishing, 2021. [10] DUTTA G, GOSWAMI P. Application of drone in agriculture: a review[J]. International Journal of Chemical Studies, 2020, 8(5): 181-187. [11] YANG Z Y, YU X Y, DEDMAN S, et al. UAV remote sensing applications in marine monitoring: knowledge visualization and review[J]. Science of the Total Environment, 2022, 838: 155939. [12] 张世勇, 张雪波, 苑晶, 等. 旋翼无人机环境覆盖与探索规划方法综述[J]. 控制与决策, 2022, 37(3): 513-529. ZHANG S Y, ZHANG X B, YUAN J, et al. A survey on coverage and exploration path planning with multi-rotor micro aerial vehicles[J]. Control and Decision, 2022, 37(3): 513-529. (in Chinese) [13] VILLA D K D, BRANDÃO A S, SARCINELLI-FILHO M. A survey on load transportation using multirotor UAVs[J]. Journal of Intelligent & Robotic Systems, 2020, 98(2): 267-296. [14] LI H J, WANG H K, FENG C, et al. AutoTrans: a complete planning and control framework for autonomous UAV payload transportation[J]. IEEE Robotics and Automation Letters, 2023, 8(10): 6859-6866. [15] CHANG C C, CHENG T H. Motor-efficiency estimation and control of multirotors comprising a cooperative transportation system[J]. IEEE Access, 2023, 11: 36566-36578. [16] HAFEEZ A, HUSAIN M A, SINGH S P, et al. Implementation of drone technology for farm monitoring & pesticide spraying: a review[J]. Information Processing in Agriculture, 2023, 10(2): 192-203. [17] JALAJAMONY H M, NAIR M, MEAD P F, et al. Drone aided thermal mapping for selective irrigation of localized dry spots[J]. IEEE Access, 2023, 11: 7320-7335. [18] YANMAZ E. Joint or decoupled optimization: multi-UAV path planning for search and rescue[J]. Ad Hoc Networks, 2023, 138: 103018. [19] 赵继达, 甄国涌, 储成群. 基于YOLOv8的无人机图像目标检测算法[J]. 计算机工程, 2024, 50(4): 113-120. ZHAO J D, ZHEN G Y, CHU C Q. Unmanned aerial vehicle image target detection algorithm based on YOLOv8[J]. Computer Engineering, 2024, 50(4): 113-120. (in Chinese) [20] 邓顺. 基于Unity3D的四旋翼仿真测试平台关键技术研究[D]. 绵阳: 西南科技大学, 2021. DENG S. Research on key technologies of quadrotor simulation test platform based on Unity3D[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese) [21] 王若萱, 吴建平, 徐辉. 自动驾驶汽车感知系统仿真的研究及应用综述[J]. 系统仿真学报, 2022, 34(12): 2507-2521. WANG R X, WU J P, XU H. Overview of research and application on autonomous vehicle oriented perception system simulation[J]. Journal of System Simulation, 2022, 34(12): 2507-2521. (in Chinese) [22] MAIRAJ A, BABA A I, JAVAID A Y. Application specific drone simulators: recent advances and challenges[J]. Simulation Modelling Practice and Theory, 2019, 94: 100-117. [23] DIAZ P V, YOON S. High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Kissimmee, USA: AIAA Press, 2018: 1266. [24] LOUW J M, JORDAAN H W. Data-driven system identification and model predictive control of a multirotor with an unknown suspended payload[J]. IFAC-PapersOnLine, 2021, 54(21): 210-215. [25] BAUERSFELD L, KAUFMANN E, FOEHN P, et al. NeuroBEM: hybrid aerodynamic quadrotor model[EB/OL].[2024-06-07]. https://arxiv.org/abs/2106.08015. [26] TORRENTE G, KAUFMANN E, FÖHN P, et al. Data-driven MPC for quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3769-3776. [27] Unity Technologies. Unity[EB/OL].[2024-06-07]. https://unity.com/. [28] Epic Games. Unreal Engine[EB/OL].[2024-06-07]. https://www.unrealengine.com. [29] WOO M, NEIDER J, DAVIS T, et al. OpenGL programming guide: the official guide to learning OpenGL, version 1.2[M]. New York, USA: Addison-Wesley Longman Publishing Co., Inc., 1999. [30] NVIDIA. Nvidia PhysX[EB/OL].[2024-06-07]. https://developer.nvidia.com/physx-sdk. [31] COUMANS E, BAI Y. PyBullet, a Python module for physics simulation for games, robotics and machine learning[EB/OL].[2024-06-07]. https://pypi.org/project/pybullet/. [32] TODOROV E, EREZ T, TASSA Y. MuJoCo: a physics engine for model-based control[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D.C., USA: IEEE Press, 2012: 5026-5033. [33] SHAH S, DEY D, LOVETT C, et al. AirSim: high-fidelity visual and physical simulation for autonomous vehicles[M]. Berlin, Germany: Springer International Publishing, 2017: 621-635. [34] QUIGLEY M. ROS: an open-source robot operating system[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2009: 1-10. [35] SONG Y, NAJI S, KAUFMANN E, et al. Flightmare: a flexible quadrotor simulator[C]//Proceedings of the 2020 Conference on Robot Learning.[S. l.]: PMLR, 2021: 1147-1157. [36] HERZOG F, CHEN J P, TEEPE T, et al. Synthehicle: multi-vehicle multi-camera tracking in virtual cities[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW). Washington D.C., USA: IEEE Press, 2023: 1-11. [37] ANTONINI A, GUERRA W, MURALI V, et al. The blackbird dataset: a large-scale dataset for UAV perception in aggressive flight[C]//Proceedings of the 2018 International Symposium on Experimental Robotics. Berlin, Germany: Springer International Publishing, 2020: 130-139. [38] WANG W S, ZHU D L, WANG X W, et al. TartanAir: a dataset to push the limits of visual SLAM[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2020: 4909-4916. [39] LIU D F, CUI Y M, CAO Z W, et al. A large-scale simulation dataset: boost the detection accuracy for special weather conditions[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2020: 1-8. [40] PANERATI J, ZHENG H H, ZHOU S Q, et al. Learning to fly—a gym environment with PyBullet Physics for reinforcement learning of multi-agent quadcopter control[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2021: 7512-7519. [41] MAKOVIYCHUK V, WAWRZYNIAK L, GUO Y R, et al. Isaac Gym: high performance GPU based physics simulation for robot learning[EB/OL].[2024-06-07]. https://arxiv.org/abs/2108.10470. [42] KOENIG N, HOWARD A. Design and use paradigms for Gazebo, an open-source multi-robot simulator[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2004: 2149-2154. [43] ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild[J]. Science Robotics, 2022, 7(66): 5954. [44] 郭晶晶, 刘允刚, 满永超, 等. 自主多旋翼无人机系统: 感知、规划与控制[J]. 控制理论与应用, 2023, 40(10): 1707-1725. GUO J J, LIU Y G, MAN Y C, et al. Autonomous multirotor UAV systems: perception[J]. Control Theory & Applications, 2023, 40(10): 1707-1725. (in Chinese) [45] QIN T, LI P L, SHEN S J. VINS-Mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. [46] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. [47] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE Press, 2011: 2520-2525. [48] FOEHN P, ROMERO A, SCARAMUZZA D. Time-optimal planning for quadrotor waypoint flight[J]. Science Robotics, 2021, 6(56): 1221. [49] QIN C, MICHET M S J, CHEN J X, et al. Time-optimal gate-traversing planner for autonomous drone racing[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2024: 8693-8699. [50] LEE T, LEOK M, MCCLAMROCH N H. Geometric tracking control of a quadrotor UAV on SE(3)[C]//Proceedings of the 49th IEEE Conference on Decision and Control (CDC). Washington D.C., USA: IEEE Press, 2010: 5420-5425. [51] NGUYEN H, KAMEL M, ALEXIS K, et al. Model predictive control for micro aerial vehicles: a survey[C]//Proceedings of the European Control Conference (ECC). Washington D.C., USA: IEEE Press, 2021: 1556-1563. [52] 林绍福, 陈盈盈, 李硕朋. 基于深度强化学习的多无人机能量传输与边缘计算联合优化方法[J]. 计算机工程, 2025, 51(3): 144-154. LIN S F, CHEN Y Y, LI S P. Method of joint optimization for multi-UAV energy transfer and edge computing based on deep reinforcement learning[J]. Computer Engineering, 2025, 51(3): 144-154. (in Chinese) [53] 吴嘉鑫, 孙一飞, 吴亚兰, 等. 面向安全传输的低能耗无人机轨迹优化算法[J]. 计算机工程, 2024, 50(2): 59-67. WU J X, SUN Y F, WU Y L, et al. Low energy consumption UAV trajectory optimization algorithm for secure transmission[J]. Computer Engineering, 2024, 50(2): 59-67. (in Chinese) [54] PENICKA R, SONG Y L, KAUFMANN E, et al. Learning minimum-time flight in cluttered environments[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7209-7216. [55] WIEDEMANN N, WVEST V, LOQUERCIO A, et al. Training efficient controllers via analytic policy gradient[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2023: 1349-1356. [56] SONG Y L, SHI K X, PENICKA R, et al. Learning perception-aware agile flight in cluttered environments[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2023: 1989-1995. [57] GUERRA W, TAL E, MURALI V, et al. FlightGoggles: photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2019: 6941-6948. [58] KONG F Z, LIU X Y, TANG B X, et al. MARSIM: a light-weight point-realistic simulator for LiDAR-based UAVs[J]. IEEE Robotics and Automation Letters, 2023, 8(5): 2954-2961. [59] LI G R, LIU X Y, LOIANNO G. RotorTM: a flexible simulator for aerial transportation and manipulation[J]. IEEE Transactions on Robotics, 2023, 40: 831-850. [60] KULKARNI M, FORGAARD T J L, ALEXIS K. Aerial Gym—Isaac Gym simulator for aerial robots[EB/OL].[2024-06-07]. https://arxiv.org/abs/2305.16510. [61] DAI X H, KE C X, QUAN Q, et al. RFlySim: automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations[J]. Aerospace Science and Technology, 2021, 114: 106727. [62] XU B T, GAO F, YU C, et al. OmniDrones: an efficient and flexible platform for reinforcement learning in drone control[J]. IEEE Robotics and Automation Letters, 2024, 9(3): 2838-2844. [63] CUI C, ZHOU X B, WANG M, et al. FastSim: a modular and plug-and-play simulator for aerial robots[J]. IEEE Robotics and Automation Letters, 2024, 9(6): 5823-5830. [64] SILANO G, AUCONE E, IANNELLI L. CrazyS: a software-in-the-loop platform for the Crazyflie 2.0 nano-quadcopter[C]//Proceedings of the 26th Mediterranean Conference on Control and Automation. Washington D.C., USA: IEEE Press, 2018: 1-6. [65] MADAAN R, GYDE N, VEMPRALA S, et al. AirSim drone racing lab[EB/OL].[2024-06-07]. https://arxiv.org/abs/2003.05654. [66] SONG Y L, STEINWEG M, KAUFMANN E, et al. Autonomous drone racing with deep reinforcement learning[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2021: 1205-1212. [67] LOQUERCIO A, KAUFMANN E, RANFTL R, et al. Learning high-speed flight in the wild[J]. Science Robotics, 2021, 6(59): 5810. [68] FU J W, SONG Y L, WU Y, et al. Learning deep sensorimotor policies for vision-based autonomous drone racing[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2023: 5243-5250. [69] SONG Y L, ROMERO A, MVLLER M, et al. Reaching the limit in autonomous racing: optimal control versus reinforcement learning[J]. Science Robotics, 2023, 8(82): 1462. [70] YANG X, HUANG S, SUN Y, et al. Learning graph-enhanced commander[WT6,3.75BZ]—[WT6BZ]executor for multi-agent navigation[C]//Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems. Richland, USA: International Foundation for Autonomous Agents and Multiagent Systems, 2023: 1652-1660. [71] PENG K X, MA T H, YU X, et al. GCMA: an adaptive multiagent reinforcement learning framework with group communication for complex and similar tasks coordination[J]. IEEE Transactions on Games, 2024, 16(3): 670-682. [72] XIANG Y M, LI S Z, LI R P, et al. Decentralized adaptive formation via consensus-oriented multi-agent communication[C]//Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP). Washington D.C., USA: IEEE Press, 2023: 449-454. |