1 |
陈若宾, 王兴伟, 马连博, 等. 绿色主干网络中一种高效的节能路由算法. 计算机学报, 2018, 41 (11): 2612- 2623.
|
|
CHEN R B , WANG X W , MA L B , et al. An energy-efficient routing algorithm in green networks. Chinese Journal of Computers, 2018, 41 (11): 2612- 2623.
|
2 |
ZHANG M J , YANG W G , GAO S X , et al. Network energy-saving adjustment routing under changing demands: models and algorithms. IEEE Access, 2020, 8, 90676- 90685.
doi: 10.1109/ACCESS.2020.2993890
|
3 |
|
4 |
ZHAO Y, LEE J. A reinforcement learning based low-delay scheduling with adaptive transmission[C]//Proceedings of the International Conference on Information and Communication Technology Convergence. Washington D.C., USA: IEEE Press, 2019: 916-919.
|
5 |
叶和元, 韩俐, 孙士民. SDN中基于蚁群优化的网络测量节点选择算法. 计算机工程, 2022, 48 (5): 191- 199.
URL
|
|
YE H Y , HAN L , SUN S M . Network measurement node selection algorithm based on ant colony optimization in SDN. Computer Engineering, 2022, 48 (5): 191- 199.
URL
|
6 |
|
7 |
LI X L . An efficient data evacuation strategy using multi-objective reinforcement learning. Applied Intelligence, 2022, 52 (7): 7498- 7512.
doi: 10.1007/s10489-021-02640-8
|
8 |
王玉, 王文灿, 白丽, 等. 基于链路生存时间预测的高动态飞行自组网组播路由协议. 计算机工程, 2021, 47 (11): 198- 206.
URL
|
|
WANG Y , WANG W C , BAI L , et al. Multicast routing protocol based on link lifetime prediction for high dynamic FANETs. Computer Engineering, 2021, 47 (11): 198- 206.
URL
|
9 |
GAREY M R , GRAHAM R L , JOHNSON D S . The complexity of computing steiner minimal trees. SIAM Journal on Applied Mathematics, 1977, 32 (4): 835- 859.
doi: 10.1137/0132072
|
10 |
周灵, 孙亚民. 基于MPH的时延约束Steiner树算法. 计算机研究与发展, 2008, 45 (5): 810- 816.
|
|
ZHOU L , SUN Y M . A delay-constrained Steiner tree algorithm using MPH. Journal of Computer Research and Development, 2008, 45 (5): 810- 816.
|
11 |
SAHOO S P , KABAT M R . The multi-constrained multicast routing improved by hybrid bacteria foraging-particle swarm optimization. Computer Science, 2019, 20 (2): 245.
doi: 10.7494/csci.2019.20.2.3131
|
12 |
MURUGESWARI R, KUMAR K A, ALAGARSAMY S. An improved hybrid discrete PSO with GA for efficient QoS multicast routing[C]//Proceedings of the 5th International Conference on Electronics, Communication and Aerospace Technology. Washington D.C., USA: IEEE Press, 2021: 609-614.
|
13 |
YAO Z , WANG Y , QIU X S . DQN-based energy-efficient routing algorithm in software-defined data centers. International Journal of Distributed Sensor Networks, 2020, 16 (6): 155- 160.
|
14 |
YI S , LI X , WANG H , et al. Energy-aware disaster backup among cloud datacenters using multi-objective reinforcement learning in software defined network. Concurrency and Computation: Practice and Experience, 2022, 34 (3): e6588.
|
15 |
燕嘉鑫. 基于强化学习的数据中心灾难备份多目标优化机制研究[D]. 济南: 山东大学, 2022.
|
|
YAN J X. Research on multi-objective optimization mechanism of data center disaster backup based on reinforcement learning[D]. Jinan: Shandong University, 2022. (in Chinese)
|
16 |
BOZORGCHENANI A , MASHHADI F , TARCHI D , et al. Multi-objective computation sharing in energy and delay constrained mobile edge computing environments. IEEE Transactions on Mobile Computing, 2020, 20 (10): 2992- 3005.
|
17 |
YU M X, WANG C P, LIU H T, et al. An energy-aware network routing algorithm based on Q-Learning[C]//Proceedings of the International Conference on High Performance Big Data and Intelligent Systems. Washington D.C., USA: IEEE Press, 2022: 254-258.
|
18 |
TRAN T N , NGUYEN T V , SHIM K , et al. A deep reinforcement learning-based QoS routing protocol exploiting cross-layer design in cognitive radio mobile Ad Hoc networks. IEEE Transactions on Vehicular Technology, 2022, 71 (12): 13165- 13181.
|
19 |
ZHOU Q , LI J , SHUAI B , et al. Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle. Applied Energy, 2019, 255, 113755.
|
20 |
LI X L , WANG H , YI S W , et al. Cost-efficient disaster backup for multiple data centers using capacity-constrained multicast. Concurrency and Computation: Practice and Experience, 2019, 31 (17): e5266.
|
21 |
许洪. 基于蚁群算法的组播路由优化与仿真[D]. 济南: 山东大学, 2010.
|
|
XU H. Optimization and simulation of multicast routing based on ant colony algorithm[D]. Jinan: Shandong University, 2010. (in Chinese)
|
22 |
马朋委. Q learning强化学习算法的改进及应用研究[D]. 淮南: 安徽理工大学, 2016.
|
|
MA P W. Improvement and application of Q learning reinforcement learning algorithm[D]. Huainan: Anhui University of Science and Technology, 2016. (in Chinese)
|
23 |
杨世贵, 王媛媛, 刘韦辰, 等. 基于强化学习的温度感知多核任务调度. 软件学报, 2021, 32 (8): 2408- 2424.
|
|
YANG S G , WANG Y Y , LIU W C , et al. Temperature-aware task scheduling on multicores based on reinforcement learning. Journal of Software, 2021, 32 (8): 2408- 2424.
|
24 |
周灵, 王建新. 路径节点驱动的低代价最短路径树算法. 计算机研究与发展, 2011, 48 (5): 721- 728.
|
|
ZHOU L , WANG J X . Path nodes-driven least-cost shortest path tree algorithm. Journal of Computer Research and Development, 2011, 48 (5): 721- 728.
|
25 |
|
26 |
TSITSIKLIS J N . Asynchronous stochastic approximation and Q-learning. Machine Learning, 1994, 16 (3): 185- 202.
|
27 |
VAN MOFFAERT K , NOWÉ A . Multi-objective reinforcement learning using sets of Pareto dominating policies. Journal of Machine Learning Research, 2014, 15 (1): 3483- 3512.
|
28 |
QIN Y , WANG H , YI S W , et al. Virtual machine placement based on multi-objective reinforcement learning. Applied Intelligence, 2020, 50 (8): 2370- 2383.
|