[1] NAMBISAN A K, MAURYA A, LAMA N, et al. Improving automatic melanoma diagnosis using deep learning-based segmentation of irregular networks[J]. Cancers(Basel), 2023, 15(4): 1259. [2] MIRIKHARAJI Z, ABHISHEK K, BISSOTO A, et al. A survey on deep learning for skin lesion segmentation[J]. Medical Image Analysis, 2023, 88: 102863. [3] LI H, HE X, ZHOU F, et al. Dense deconvolutional network for skin lesion segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(2): 527-537. [4] 郝宏达, 罗健旭. 基于多尺度区域特征融合的多器官语义分割模型[J]. 计算机工程, 2025, 51(8): 270-280. HAO H D, LUO J X. Multi-organ semantic segmentation model based on multi-scale region feature fusion[J]. Computer Engineering, 2025, 51(8): 270-280. (in Chinese) [5] 顾群, 随思懿, 王瑞, 等. 基于改进YOLOv8的皮肤黑色素瘤图像分割算法[J/OL]. 计算机工程: 1-11[2024-11-05]. https://doi.org 10.19678/j.issn.1000-3428.0069910. GU Q, SUI S Y, WANG R, et al. Skin melanoma image segmentation algorithm based on improved YOLOv8[J/OL]. Computer Engineering: 1-11[2024-11-05]. https://doi.org 10.19678/j.issn.1000-3428.0069910. (in Chinese) [6] DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1911-1920. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer. Berlin, Germany: Springer, 2015: 234-241. [8] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [9] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141. [10] WALTER B. Analysis of convolutional neural network image classifiers in a hierarchical max-pooling model with additional local pooling[J]. Journal of Statistical Planning and Inference, 2023, 224: 109-126. [11] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 2117-2125. [12] FAN Y, LI J B, ASLAM BHATTI U, et al. A multi-watermarking algorithm for medical images using InceptionV3 and DCT[J]. Computers, Materials & Continua, 2023, 74(1): 1279-1302. [13] FAIZAL S, RAJPUT C A, TRIPATHI R, et al. Automated cataract disease detection on anterior segment eye images using adaptive thresholding and fine tuned InceptionV3 model[J]. Biomedical Signal Processing and Control, 2023, 82: 104550. [14] PILLAI R, SHARMA A, SHARMA N, et al. Brain tumor classification using VGG 16, ResNet50, and InceptionV3 transfer learning models[C]//Proceedings of the 2nd IEEE/CVF Conference for Innovation in Technology. Washington D. C., USA: IEEE Press, 2024: 1885-197. [15] JANDHYALA S S, JALLEDA R R, RAVURI D M. Forest fire classification and detection in aerial images using InceptionV3 and SSD models[C]//Proceedings of the International Conference on Intelligent Data Communication Technologies and Internet of Things. Bengaluru, India:[s. n.], 2023: 320-325. [16] 贵向泉, 张馨月, 李立. 高分辨率皮肤黑色素瘤图像的两阶段式分割算法[J]. 计算机工程, 2023, 49(11): 267-274. GUI X Q, ZHANG X Y, LI L. Two-stage segmentation algorithm of high resolution skin melanoma image[J]. Computer Engineering, 2023, 49(11): 267-274. (in Chinese) [17] 赵宏, 王枭. 基于Swin-Transformer的黑色素瘤图像病灶分割研究[J]. 计算机工程, 2024, 50(8): 249-258. ZHAO H, WANG X. Study on lesion segmentation of melanoma images based on Swin-Transformer[J]. Computer Engineering, 2024, 50(8): 249-258. (in Chinese) [18] 胡帅, 李华玲, 郝德琛. 改进U-Net的多级边缘增强医学图像分割网络[J]. 计算机工程, 2024, 50(4): 286-293. HU S, LI H L, HAO D C. Improved multistage edge-enhanced medical image segmentation network of U-Net[J]. Computer Engineering, 2024, 50(4): 286-293. (in Chinese) [19] 徐蓬泉, 梁宇翔, 李英. 融合多尺度语义和剩余瓶颈注意力的医学图像分割[J]. 计算机工程, 2023, 49(10): 162-170. XU P Q, LIANG Y X, LI Y. Medical image segmentation fusing multi-scale semantic and residual bottleneck attention[J]. Computer Engineering, 2023, 49(10): 162-170. (in Chinese) [20] 李萍, 张雪英, 王夙喆, 等. 基于半监督多尺度一致性学习的医学影像分割[J]. 计算机工程, 2025, 51(10): 295-307. LI P, ZHANG X Y, WANG S Z, et al. Medical image segmentation based on semi-supervised multi-scale consistency learning[J]. Computer Engineering, 2025, 51(10): 295-307. (in Chinese) [21] 郭敏, 张熙涵, 李阳. 融合注意力的教师互一致性半监督医学图像分割[J]. 计算机工程, 2024, 50(9): 313-323. GUO M, ZHANG X H, LI Y. Integrated attentional teacher mutual consistency semi-supervised medical image segmentation[J]. Computer Engineering, 2024, 50(9): 313-323. (in Chinese) [22] LI X T, ZHAO H L, HAN L, et al. Gated fully fusion for semantic segmentation[J]. Artificial Intelligence, 2020, 34(7): 11418-11425. [23] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th IEEE International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin, Germany: Springer, 2018: 3-11. [24] SUN Y, BI F K, GAO Y T, et al. A multi-attention U-Net for semantic segmentation in remote sensing images[J]. Symmetry, 2022, 14(5): 906. [25] CAO Y, VASSANTACHART A, YE J C, et al. Automatic detection and segmentation of multiple brain metastases on MR images using simultaneous optimized Double U-Net architecture[J]. International Journal of Radiation Oncology, Biology, Physics, 2020, 108(3): S130-S131. [26] YAQUB M, FENG J C, AHMED S, et al. DeepLabV3, IBCO-based ALCResNet: a fully automated classification, and grading system for brain tumor[J]. Alexandria Engineering Journal, 2023, 76: 609-627. [27] THOMAS E, PAWAN S J, KUMAR S, et al. Multi-res-Attention U-Net: a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1724-1734. |