计算机工程 ›› 2019, Vol. 45 ›› Issue (2): 240-244.doi: 10.19678/j.issn.1000-3428.0049272

• 图形图像处理 • 上一篇    下一篇

基于纹理相似栈的超声图像分割方法

谢行雨,王玲   

  1. 西南石油大学 计算机科学学院,成都 610500
  • 收稿日期:2017-11-13 出版日期:2019-02-15 发布日期:2019-02-15
  • 作者简介:谢行雨(1988—),男,硕士研究生,主研方向为图像处理;王玲,教授。
  • 基金项目:

    国家自然科学基金(41674141)。

Ultrasonic Image Segmentation Method Based on Similar Texture Stacks

XIE Xingyu,WANG Ling   

  1. School of Computer Science,Southwest Petroleum University,Chengdu 610500,China
  • Received:2017-11-13 Online:2019-02-15 Published:2019-02-15

摘要:

超声图像高噪声、低对比度的特点使其含噪图像的纹理信息较难提取。为此,提出一种基于自适应相似栈的聚类分割方法。对超声图像进行自适应去噪获得估计图像,结合超声图像和估计图像建立基于非局部搜索的相似栈列,应用相似栈列对超声图像纹理特征值进行修正,并使用K-means聚类将超声图像划分为互不重叠的区域。实验结果表明,该方法分割结果与人工分割结果的重合度达到93.28%,在差异较大的样本下重合度标准差为2.07%,从而验证其可对超声图像实现稳定有效的分割。

关键词: 图像分割, 纹理特征, 超声图像, 小波变换, 特征提取, 特征聚类

Abstract:

The properties of high noise and low contrast in ultrasound images make the noisy texture information difficult to extract.To solve this problem,this paper proposes a new clustering segmentation method based on adaptive similar stacks.The estimated image is formed by adaptive denoising of the ultrasonic image.The original image and the estimated image are used to build the similar stacks based on nonlocal search.Then,the similar stacks are utilized to correct the texture feature vectors of the ultrasound image.The K-means clustering is used to divide the ultrasound images into non-overlapping regions.Experimental results show that the coincidence degree between the results of manual segmentation and the results of this algorithm is 93.28%,and the standard deviation of that is 2.07% under the scenario of large samples,which prove that the proposed method can efficiently and steadily segment the ultrasonic image.

Key words: image segmentation, texture feature, ultrasonic image, wavelet transform, feature extraction, feature clustering

中图分类号: