1 |
XU J L, SU W, ZHOU M C. Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, 41(4): 455- 469.
|
2 |
XU J L, SU W, ZHOU M C. Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1659- 1667.
doi: 10.1109/TVT.2010.2041805
|
3 |
杨海宇, 郭文普, 康凯. 基于卷积长短时深度神经网络的信号调制方式识别方法. 计算机应用, 2023, 43(4): 1318- 1322.
URL
|
|
YANG H Y, GUO W P, KANG K. Signal modulation recognition method based on convolutional long short-term deep neural network. Journal of Computer Applications, 2023, 43(4): 1318- 1322.
URL
|
4 |
潘一震, 韩顺利, 季桓勇, 等. 基于通道融合的调制信号识别方法. 现代电子技术, 2023, 46(12): 57- 62.
URL
|
|
PAN Y Z, HAN S L, JI H Y, et al. Modulation signal recognition method based on channel fusion. Modern Electronics Technique, 2023, 46(12): 57- 62.
URL
|
5 |
殷赞, 王超杰, 程子恒, 等. 一种基于注意力机制卷积神经网络模型的自动调制识别算法. 电波科学学报, 2023, 38(5): 773- 779.
URL
|
|
YIN Z, WANG C J, CHENG Z H, et al. An automatic modulation recognition algorithm based on convolutional neural networks with attention mechanism. Chinese Journal of Radio Science, 2023, 38(5): 773- 779.
URL
|
6 |
刘高辉, 王壮壮. 基于轻量型网络的单载波信号调制识别. 计算机系统应用, 2023, 32(8): 238- 243.
URL
|
|
LIU G H, WANG Z Z. Modulation recognition of single carrier signal based on lightweight network. Computer Systems and Applications, 2023, 32(8): 238- 243.
URL
|
7 |
任彦洁, 唐晓刚, 张斌权, 等. 基于时间卷积网络的通信信号调制识别算法. 无线电工程, 2023, 53(4): 807- 814.
doi: 10.3969/j.issn.1003-3106.2023.04.008
|
|
REN Y J, TANG X G, ZHANG B Q, et al. Communication signal modulation recognition algorithm based on temporal convolutional network. Radio Engineering, 2023, 53(4): 807- 814.
doi: 10.3969/j.issn.1003-3106.2023.04.008
|
8 |
胡文勇, 童强, 王兵. 一种用于自动调制识别的GR-ResNet方法. 中国无线电, 2023,(5): 65- 69.
URL
|
|
HU W Y, TONG Q, WANG B. A GR-ResNet method for automatic modulation identification. China Radio, 2023,(5): 65- 69.
URL
|
9 |
高锐, 闫光辉, 罗浩, 等. 基于WebSocket技术无线频谱大数据实时监测系统设计与实现. 兰州交通大学学报, 2022, 41(1): 52- 60.
URL
|
|
GAO R, YAN G H, LUO H, et al. Design and implementation of a real-time analysis system for big data wireless spectrum monitoring based on WebSocket. Journal of Lanzhou Jiaotong University, 2022, 41(1): 52- 60.
URL
|
10 |
赵杰, 刘小靖, 胡仁芝. 实时检测与定位电网电压瞬时波动的Coiflets小波方法. 电力系统保护与控制, 2017, 45(15): 8- 14.
URL
|
|
ZHAO J, LIU X J, HU R Z. A Coiflets wavelet method for real-timely detecting and locating transient surges of network voltage. Power System Protection and Control, 2017, 45(15): 8- 14.
URL
|
11 |
牟希农. 离散小波变换在医学影像图像局部压缩中的实现研究. 贵州大学学报(自然科学版), 2021, 38(5): 50- 53.
URL
|
|
MOU X N. Research on the realization of discrete wavelet transform in local compression of medical image. Journal of Guizhou University (Natural Sciences), 2021, 38(5): 50- 53.
URL
|
12 |
刘秋红, 李天昀, 王彬, 等. 基于离散小波分解和频率脊线分析的CPM信号符号速率盲估计. 电子学报, 2020, 48(3): 470- 477.
URL
|
|
LIU Q H, LI T Y, WANG B, et al. Symbol rate estimation for CPM signal based on discrete wavelet decomposition and frequency ridge analysis. Acta Electronica Sinica, 2020, 48(3): 470- 477.
URL
|
13 |
张安康, 吴玉厚, 赵德宏, 等. 基于离散小波分解的刀具故障诊断. 工具技术, 2022, 56(9): 52- 56.
URL
|
|
ZHANG A K, WU Y H, ZHAO D H, et al. Tool fault diagnosis based on discrete wavelet decomposition. Tool Engineering, 2022, 56(9): 52- 56.
URL
|
14 |
谭章禄, 袁慧. 时间序列预处理与信息噪声之间的关系研究-基于离散小波变换和ARIMA模型. 数学的实践与认识, 2020, 50(15): 30- 42.
URL
|
|
TAN Z L, YUAN H. Research on the relationship between time series preprocessing and information noise—based on discrete wavelet transform and ARIMA model. Mathematics in Practice and Theory, 2020, 50(15): 30- 42.
URL
|
15 |
孙洁琪, 李亚峰, 张文博, 等. 基于离散小波变换的双域特征融合深度卷积神经网络. 计算机科学, 2022, 49(S1): 434- 440.
URL
|
|
SUN J Q, LI Y F, ZHANG W B, et al. Deep convolutional neural network for dual-domain feature fusion based on discrete wavelet transform. Computer Science, 2022, 49(S1): 434- 440.
URL
|
16 |
邵婷婷, 白宗文, 周美丽. 基于离散小波变换的信号分解与重构. 计算机技术与发展, 2014, 24(11): 159- 161.
URL
|
|
SHAO T T, BAI Z W, ZHOU M L. Decomposition and reconstruction of signal based on DWT. Computer Technology and Development, 2014, 24(11): 159- 161.
URL
|
17 |
|
18 |
ZHANG D N, LU Y Y, LI Y D, et al. Frequency learning attention networks based on deep learning for automatic modulation classification in wireless communication. Pattern Recognition, 2023, 137, 109345.
|
19 |
HOU Y M, JIA S Y, LUN X M, et al. Deep feature mining via attention-based BiLSTM-GCN for human motor imagery recognition[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2005.00777v2.
|
20 |
WENG L, HE Y, PENG J H, et al. Deep cascading network architecture for robust automatic modulation classification. Neurocomputing, 2021, 455, 308- 324.
|
21 |
|
22 |
LIU K, LI F. Automatic modulation recognition based on a multiscale network with statistical features. Physical Communication, 2023, 58, 102052.
|
23 |
QI P H, ZHOU X Y, ZHENG S L, et al. Automatic modulation classification based on deep residual networks with multimodal information. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 21- 33.
|
24 |
ZHANG Z F, LUO H, WANG C, et al. Automatic modulation classification using CNN-LSTM based dual-stream structure. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13521- 13531.
|
25 |
|
26 |
TIAN F, WANG Q G, LI X, et al. Heterogeneous multimedia cooperative annotation based on multimodal correlation learning. Journal of Visual Communication and Image Representation, 2019, 58, 544- 553.
|
27 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
28 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1314-1324.
|