[1] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2015:234-241. [2] ZHOU Z W, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++:a nested U-Net architecture for medical image segmentation[M]. Berlin, Germany:Springer, 2018. [3] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net:learning where to look for the pancreas[EB/OL].[2023-05-11]. https://arxiv.org/abs/1804.03999. [4] HUANG H M, LIN L F, TONG R F, et al. UNet 3+:a full-scale connected UNet for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA:IEEE Press, 2020:1055-1059. [5] VALANARASU J M J, PATEL V M. UNeXt:MLP-based rapid medical image segmentation network[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2022:23-33. [6] Codelab. LiTS database:liver tumor segmentation challenge[EB/OL].[2023-05-11]. http://www.lits-challenge.com [7] JAEGER S, KARARGYRIS A, CANDEMIR S, et al. Automatic tuberculosis screening using chest radiographs[J]. IEEE Transactions on Medical Imaging, 2014, 33(2):233-245. [8] CANDEMIR S, JAEGER S, PALANIAPPAN K, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration[J]. IEEE Transactions on Medical Imaging, 2014, 33(2):577-590. [9] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [10] ALOM M Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1):014006. [11] 林志洁, 郑秋岚, 梁涌, 等. 基于内卷U-Net的医学图像分割模型[J]. 计算机工程, 2022, 48(8):180-186. LIN Z J, ZHENG Q L, LIANG Y, et al. Medical image segmentation model based on involution U-Net[J]. Computer Engineering, 2022, 48(8):180-186.(in Chinese) [12] 刘文, 亓文霞, 仲国强, 等. 基于Concat-UNet的食管癌肿瘤医学影像分割研究[J]. 计算机工程, 2022, 48(12):312-320. LIU W, QI W X, ZHONG G Q, et al. Research on medical image segmentation for esophageal cancer tumors based on Concat-UNet[J]. Computer Engineering, 2022, 48(12):312-320.(in Chinese) [13] LIN D Y, LI Y Q, NWE T L, et al. RefineU-Net:improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation[J]. Pattern Recognition Letters, 2020, 138:267-275. [14] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2017:4700-4708. [15] AZAD R, ASADI-AGHBOLAGHI M, FATHY M, et al. Bi-directional ConvLSTM U-Net with densley connected convolutions[EB/OL].[2023-05-11]. https://arxiv.org/abs/1909.00166. [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2016:770-778. [17] XU Q, MA Z C, HE N, et al. DCSAU-Net:a deeper and more compact split-attention U-Net for medical image segmentation[J]. Computers in Biology and Medicine, 2023, 154:106626. [18] LIU H L, FENG Y, XU H, et al. MEA-Net:multilayer edge attention network for medical image segmentation[J]. Scientific Reports, 2022, 12:7868. [19] ZENG Z H, FAN C D, XIAO L Y, et al. DEA-UNet:a dense-edge-attention UNet architecture for medical image segmentation[J]. Journal of Electronic Imaging, 2022, 31:043032. [20] ZHANG Z, FU H, DAI H, et al. ET-Net:a generic edge-attention guidance network for medical image segmentation[C]//Proceedings of the 22nd International Conference Medical Image Computing and Computer Assisted Intervention. Berlin, Germany:Springer, 2019:442-450. [21] HAO D C, LI H L. A graph-based edge attention gate medical image segmentation method[J]. IET Image Processing, 2023, 17(7):2142-2157. [22] 孙军梅,葛青青,李秀梅,等.一种具有边缘增强特点的医学图像分割网络[J].电子与信息学报,2022,44(5):1643-1652. SUN J M, GE Q Q, LI X M, et al. A medical image segmentation network with boundary enhancement[J]. Journal of Electronics & Information Technology, 2022,44(5):1643-1652. (in Chinese) [23] 李翠云, 白静, 郑凉. 融合边缘增强注意力机制和U-Net网络的医学图像分割[J]. 图学学报, 2022, 43(2):273-278. LI C Y, BAI J, ZHENG L. A U-Net based contour enhanced attention for medical image segmentation[J]. Journal of Graphics, 2022, 43(2):273-278.(in Chinese) [24] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2018:3-19. [25] 王晓援, 王雪. 基于多尺度语义表征的医学图像分割网络[J]. 吉林大学学报(理学版), 2022, 60(6):1370-1376. WANG X Y, WANG X. Medical image segmentation network based on multi-scale semantic representation[J]. Journal of Jilin University(Science Edition), 2022, 60(6):1370-1376.(in Chinese) [26] ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):749-753. [27] GU Z W, CHENG J, FU H Z, et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292. [28] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [29] CHEN J N, LU Y Y, YU Q H, et al. TransUNet:Transformers make strong encoders for medical image segmentation[EB/OL].[2023-05-11]. https://arxiv.org/abs/2102.04306. [30] XU G P, WU X R, ZHANG X, et al. LeViT-UNet:make faster encoders with Transformer for medical image segmentation[EB/OL].[2023-05-11]. https://arxiv.org/abs/2107.08623. |