计算机工程 ›› 2019, Vol. 45 ›› Issue (6): 225-229,236.doi: 10.19678/j.issn.1000-3428.0050304

• 人工智能及识别技术 • 上一篇    下一篇

基于归因理论用户偏好提取的协同过滤算法

毛德磊a,b,唐雁a,b   

  1. 西南大学 a.计算机与信息科学学院; b.商务智能实验室,重庆 400715
  • 收稿日期:2018-01-26 出版日期:2019-06-15 发布日期:2019-06-15
  • 作者简介:毛德磊(1994—),男,硕士研究生,主研方向为数据挖掘、知识图谱、推荐算法;唐雁,教授。
  • 基金项目:

    四川省教育厅自然科学重点项目(18ZA0217);重庆市2017年度中小学创新人才工程项目(CY120217)。

Collaborative filtering algorithm based on attribution theory for user preference extraction

MAO Deleia,b,TANG Yana,b   

  1. a.College of Computer and Information Science;b.Laboratory of Business Intelligence,Southwest University,Chongqing 400715,China
  • Received:2018-01-26 Online:2019-06-15 Published:2019-06-15

摘要:

协同过滤算法的用户评分与用户偏好之间可能存在偏差,导致推荐准确度降低。为此,提出一种基于归因理论的用户偏好提取算法。基于用户行为的一致性、区别性和正负偏好信息提取用户偏好。融合偏好相似性与评分相似性以获得更优的最近邻集合,计算用户对未评分项目的预测评分值。在通用数据集Movies Lens-1M上进行实验,结果表明,在10%偏好相似性与60%评分相似性的融合条件下,该算法的推荐准确度取得最优值,且优于传统协同过滤算法以及HU-FCF、BM/CPT-V等改进算法。

关键词: 协同过滤, 用户偏好, 归因理论, 行为信息, 个性化推荐系统

Abstract:

The possible deviations between user ratings and user preferences in collaborative filtering algorithms result in reduced recommendation accuracy.For this problem,a user preference extraction algorithm based on attribution theory is proposed.User preferences are extracted based on the consensus,distinctiveness,positive and negative preference information of user behaviors.Merge preference similarity and rating similarity to get a better nearest neighbor set,and calculate a user’s predicted rating for unrated items.Experiments are carried on Movies Lens-1M dataset and the results show that under the merging condition of 10% preference similarity and 60% rating similarity,the algorithm achieves the highest recommendation accuracy,which is better than the traditional collaborative filtering algorithm and other improved algorithms,such as HU-FCF、BM/CPT-V.

Key words: collaborative filtering, user preference, attribution theory, behavior information, personalization recommendation system

中图分类号: