1 |
KALMAN R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35- 45.
doi: 10.1115/1.3662552
|
2 |
LUCY L B. An iterative technique for the rectification of observed distributions. The Astronomical Journal, 1974, 79, 745.
doi: 10.1086/111605
|
3 |
RICHARDSON W H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 1972, 62(1): 55.
doi: 10.1364/JOSA.62.000055
|
4 |
|
5 |
|
6 |
SCHULER C J, HIRSCH M, HARMELING S, et al. Learning to deblur. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7): 1439- 1451.
doi: 10.1109/TPAMI.2015.2481418
|
7 |
XU X, PAN J, ZHANG Y J, et al. Motion blur kernel estimation via deep learning. IEEE Transactions on Image Processing, 2018, 27(1): 194- 205.
doi: 10.1109/TIP.2017.2753658
|
8 |
KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8183-8192.
|
9 |
ZHANG H G, DAI Y C, LI H D, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5971-5979.
|
10 |
|
11 |
NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 257-265.
|
12 |
DONG J X, PAN J S, YANG Z B, et al. Multi-scale residual low-pass filter network for image deblurring[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 12345-12354.
|
13 |
|
14 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2010.11929.
|
15 |
|
16 |
WANG Z D, CUN X D, BAO J M, et al. Uformer: a general U-shaped Transformer for image restoration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 17662-17672.
|
17 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 9992-10002.
|
18 |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5718-5729.
|
19 |
ZHAO Q, YANG H, ZHOU D M, et al. Rethinking image deblurring via CNN-Transformer multiscale hybrid architecture. IEEE Transactions on Instrumentation Measurement, 2023, 72, 3230482.
|
20 |
KONG L S, DONG J X, GE J J, et al. Efficient frequency domain-based transformers for high-quality image deblurring[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 5886-5895.
|
21 |
CUI Y N, TAO Y, REN W Q, et al. Dual-domain attention for image deblurring. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(1): 479- 487.
doi: 10.1609/aaai.v37i1.25122
|
22 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1646-1654.
|
23 |
TAO X, GAO H Y, SHEN X Y, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8174-8182.
|
24 |
CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 4621-4630.
|
25 |
王向军, 欧阳文森. 多尺度循环注意力网络运动模糊图像复原方法. 红外与激光工程, 2022, 51(6): 460- 468.
URL
|
|
WANG X J, OUYANG W S. Multi-scale recurrent attention network for image motion deblurring. Infrared and Laser Engineering, 2022, 51(6): 460- 468.
URL
|
26 |
|
27 |
|
28 |
HASSANI A, WALTON S, LI J C, et al. Neighborhood attention Transformer[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 6185-6194.
|
29 |
|
30 |
GAO H Y, TAO X, SHEN X Y, et al. Dynamic scene deblurring with parameter selective sharing and nested skip connections[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3843-3851.
|
31 |
HU J, SHEN L, SUN G. Squeeze-and-Excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
32 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
33 |
|
34 |
SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1874-1883.
|
35 |
赵敬伟, 林珊玲, 梅婷, 等. 基于YOLACT与Transformer相结合的实例分割算法研究. 半导体光电, 2023, 44(1): 134- 140.
URL
|
|
ZHAO J W, LIN S L, MEI T, et al. Research on instance segmentation algorithm based on YOLACT and Transformer. Semiconductor Optoelectronics, 2023, 44(1): 134- 140.
URL
|
36 |
|
37 |
ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 2735-2745.
|
38 |
LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using Swin Transformer[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1833-1844.
|
39 |
SHEN Z Y, WANG W G, LU X K, et al. Human-aware motion deblurring[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 5572-5581.
|
40 |
|
41 |
KUPYN O, MARTYNIUK T, WU J R, et al. DeblurGAN-V2: deblurring (orders-of-magnitude) faster and better[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8877-8886.
|
42 |
PARK D, KANG D U, KIM J, et al. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1911.07410.
|
43 |
WAN S D, TANG S, XIE X Z, et al. Deep convolutional-neural-network-based channel attention for single image dynamic scene blind deblurring. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(8): 2994- 3009.
doi: 10.1109/TCSVT.2020.3035664
|
44 |
PUROHIT K, SUIN M, RAJAGOPALAN A N, et al. Spatially-adaptive image restoration using distortion-guided networks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2289-2299.
|
45 |
WANG J B, WANG Z Q, YANG A P. Iterative dual CNNs for image deblurring. Mathematics, 2022, 10(20): 3891.
doi: 10.3390/math10203891
|
46 |
李现国, 李滨. 基于Transformer和多尺度CNN的图像去模糊. 计算机工程, 2023, 49(9): 226-233, 245.
URL
|
|
LI X G, LI B. Image deblurring based on Transformer and multi-scale CNN. Computer Engineering, 2023, 49(9): 226-233, 245.
URL
|