1 |
刘志浩, 孟凡云, 王金鹤, 等. 基于空洞卷积与注意力模块的立体匹配算法. 计算机工程, 2023, 49(8): 223- 231.
URL
|
|
LIU Z H, MENG F Y, WANG J H, et al. Stereo matching algorithm based on atrous convolution and attention module. Computer Engineering, 2023, 49(8): 223- 231.
URL
|
2 |
范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建. 计算机工程, 2023, 49(9): 217- 225.
URL
|
|
FAN W Z, WU T, XU J P, et al. Super-resolution reconstruction of arbitrary scale images based on multi-resolution feature fusion. Computer Engineering, 2023, 49(9): 217- 225.
URL
|
3 |
SORIN V, BARASH Y, KONEN E, et al. Deep learning for natural language processing in radiology-fundamentals and a systematic review. Journal of the American College of Radiology, 2020, 17(5): 639- 648.
doi: 10.1016/j.jacr.2019.12.026
|
4 |
MALIK M, MALIK M K, MEHMOOD K, et al. Automatic speech recognition: a survey. Multimedia Tools and Applications, 2021, 80(6): 9411- 9457.
doi: 10.1007/s11042-020-10073-7
|
5 |
丰芳宇, 罗晓曙, 蒙志明, 等. 基于抗混叠残差注意力网络的人脸表情识别. 计算机工程, 2023, 49(8): 190- 198.
URL
|
|
FENG F Y, LUO X S, MENG Z M, et al. Facial expression recognition based on anti-aliasing residual attention network. Computer Engineering, 2023, 49(8): 190- 198.
URL
|
6 |
WANG J, ZHU H D, WANG S H, et al. A review of deep learning on medical image analysis. Mobile Networks and Applications, 2021, 26(1): 351- 380.
doi: 10.1007/s11036-020-01672-7
|
7 |
MINAEE S, KAFIEH R, SONKA M, et al. Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning. Medical Image Analysis, 2020, 65, 101794.
doi: 10.1016/j.media.2020.101794
|
8 |
吴昊, 徐杨, 曹斌. w-net: 一种用于多种医学图像的二次特征提取方法. 激光与光电子学进展, 2023, 60(4): 0410015.
URL
|
|
WU H, XU Y, CAO B. w-net: a secondary feature extraction method for multiple medical images. Laser & Optoelectronics Progress, 2023, 60(4): 0410015.
URL
|
9 |
LECUN Y, BENGIO Y, HINTON G. Deep learning. Nature, 2015, 521, 436- 444.
doi: 10.1038/nature14539
|
10 |
SHRESTHA A, MAHMOOD A. Review of deep learning algorithms and architectures. IEEE Access, 2019, 7, 53040- 53065.
doi: 10.1109/ACCESS.2019.2912200
|
11 |
LIU S F, WANG Y, YANG X, et al. Deep learning in medical ultrasound analysis: a review. Engineering, 2019, 5(2): 261- 275.
doi: 10.1016/j.eng.2018.11.020
|
12 |
JIN Z P, SUN Y W, CHENG A C. Predicting cardiovascular disease from real-time electrocardiographic monitoring: an adaptive machine learning approach on a cell phone[C]//Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington D. C., USA: IEEE Press, 2009: 6889-6892.
|
13 |
SHEN T W, SHEN H P, LIN C H, et al. Detection and prediction of Sudden Cardiac Death (SCD) for personal healthcare[C]//Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington D. C., USA: IEEE Press, 2007: 2575-2578.
|
14 |
FEENY A K, CHUNG M K, MADABHUSHI A, et al. Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circulation Arrhythmia and Electrophysiology, 2020, 13(8): e007952.
doi: 10.1161/CIRCEP.119.007952
|
15 |
ATTIA Z I, NOSEWORTHY P A, LOPEZ-JIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, 2019, 394(10201): 861- 867.
doi: 10.1016/S0140-6736(19)31721-0
|
16 |
JALALI A, LEE M. Atrial fibrillation prediction with residual network using sensitivity and orthogonality constraints. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 407- 413.
doi: 10.1109/JBHI.2019.2957809
|
17 |
ANDERSEN R S, PEIMANKAR A, PUTHUSSERYPADY S. A deep learning approach for real-time detection of atrial fibrillation. Expert Systems with Applications, 2019, 115, 465- 473.
doi: 10.1016/j.eswa.2018.08.011
|
18 |
CHIANG J K, KAO H H, KAO Y H. Association of paroxysmal supraventricular tachycardia with ischemic stroke: a national case-control study. Journal of Stroke and Cerebrovascular Diseases, 2017, 26(7): 1493- 1499.
|
19 |
SACKS N C, EVERSON K, EMDEN M R, et al. Disparities in the management of newly diagnosed paroxysmal supraventricular tachycardia for women versus men in the United States. Journal of the American Heart Association, 2020, 9(19): e015910.
doi: 10.1161/JAHA.120.015910
|
20 |
KADISH A, PASSMAN R. Mechanisms and management of paroxysmal supraventricular tachycardia. Cardiology in Review, 1999, 7(5): 254- 264.
URL
|
21 |
GECZY T, RAMDAT MISIER N L, SZILI-TOROK T. Contact-Force-Sensing-Based Radiofrequency Catheter Ablation in Paroxysmal Supraventricular Tachycardias (COBRA-PATH): a randomized controlled trial. Trials, 2020, 21(1): 321.
|
22 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2023-07-11]. http://arxiv.org/abs/1502.03167.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
24 |
DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 1911-1920.
|
25 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|