作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (5): 29-37,47. doi: 10.19678/j.issn.1000-3428.0064512

• 热点与综述 • 上一篇    下一篇

基于领域自适应的卫星工程参数异常检测

王爱玲1,2, 马文臻1, 邹自明1, 钟佳1,2   

  1. 1. 中国科学院国家空间科学中心 空间科学卫星运控部, 北京 100190;
    2. 中国科学院大学 计算机科学与技术学院, 北京 100049
  • 收稿日期:2022-04-20 修回日期:2022-05-27 发布日期:2022-08-09
  • 作者简介:王爱玲(1997-),女,硕士研究生,主研方向为大数据处理与应用;马文臻,副研究员;邹自明,研究员;钟佳,副研究员。
  • 基金资助:
    中国科学院“十四五”网络安全和信息化专项(WX145XQ07-06);中国科学院网信专项(CAS-WX2021PY-0101)。

Anomaly Detection of Satellite Engineering Parameters Based on Domain Adaptation

WANG Ailing1,2, MA Wenzhen1, ZOU Ziming1, ZHONG Jia1,2   

  1. 1. Space Science Mission Operation Center, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-04-20 Revised:2022-05-27 Published:2022-08-09

摘要: 卫星工程参数异常检测是判断卫星与载荷健康状态的重要手段。传统异常检测方法通常针对具体的卫星或载荷设计,在处理新卫星和新载荷时需要重新建模和训练,然而新运行的卫星设备尚未产生足够的历史数据来支撑建模任务。融合深度学习和迁移学习思想,提出一种基于领域自适应的卫星工程参数异常检测方法。利用深度残差收缩网络(DRSN)结构框架,在训练过程中将无标签的目标域卫星工程参数数据加入网络训练过程,有效获取数据的特征表示。对提取到的数据特征使用距离度量,衡量所提取的源域特征与目标域特征之间的差异性,使得两者在特定特征空间上的分布相似,从而增强了DRSN利用已有标签数据对无标签数据的分类能力。在基于空间科学先导专项系列卫星工程参数构建的数据集上的实验结果表明,该方法的准确率达到98.03%,与梯度提升决策树、支持向量机、DRSN方法相比,迁移检测平均准确率分别高出20.95、22.51、15.02个百分点,能够有效对新卫星和新载荷开展快速准确的异常检测。

关键词: 卫星工程参数, 异常检测, 深度学习, 迁移学习, 领域自适应

Abstract: Anomaly detection of satellite engineering parameters is an important means to judge the health status of satellites and payloads. However,conventional anomaly detection methods are trained and designed based on data from a single satellite,achieving poor detection results when applied to new satellites. Additionally,it takes time to gather enough training data from a new satellite in orbit to create a useful model specific to that satellite. To solve this problem,an anomaly detection method based on domain adaptation is proposed. A Deep Residual Shrinkage Network(DRSN) is applied to extract the features of detected data by adding unlabeled detected data into the training process. In addition,a distance measure is used to estimate dissimilarities between source and target domain features.The distance measure can be used to make feature distributions in specific feature spaces similar,thus enhancing DRSN's ability to classify unlabeled data using existing labeled data. Based on engineering datasets from satellites used in the Space Science Pioneer Project,the detection accuracy of the proposed method is 98.03%,which is an improvement of 20.95,22.51,and 15.02 percentage points over the Gradient Boosting Decision Tree(GBDT),Support Vector Machine(SVM),and DRSN,respectively. Thus,this method can provide precise and fast anomaly detection when a new satellite or a new payload is launched.

Key words: satellite engineering parameter, anomaly detection, deep learning, transfer learning, domain adaptation

中图分类号: