[1] 王亚坤,杨凯飞,张婕,等.卫星在轨故障案例与人工智能故障诊断[J].中国空间科学技术,2022,42(1):16-29. WANG Y K,YANG K F,ZHANG J,et al.Case study of in-orbit satellite failures and artificial intelligence based failure detection[J].Chinese Space Science and Technology,2022,42(1):16-29.(in Chinese) [2] 彭喜元,庞景月,彭宇,等.航天器遥测数据异常检测综述[J].仪器仪表学报,2016,37(9):1929-1945. PENG X Y,PANG J Y,PENG Y,et al.Review on anomaly detection of spacecraft telemetry data[J].Chinese Journal of Scientific Instrument,2016,37(9):1929-1945.(in Chinese) [3] DENNIS D.Automated learning and monitoring of limit functions[EB/OL].[2022-03-14].https://www.researchgate.net/publication/2813766_Automated_Learning_and_Monitoring_of_Limit_Functions. [4] YAIRI T,KAWAHARA Y,FUJIMAKI R,et al.Telemetry-mining:a machine learning approach to anomaly detection and fault diagnosis for space systems[C]//Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology.Washington D.C.,USA.IEEE Press,2006:456-476. [5] LIU D T,PANG J Y,SONG G,et al.Fragment anomaly detection with prediction and statistical analysis for satellite telemetry[J].IEEE Access,2017,5:19269-19281. [6] 杨甲森.卫星遥测数据相关性知识发现方法研究[D].北京:中国科学院大学,2019. YANG J S.Research on correlation knowledge discovery method of spacecraft telemetry data[D].Beijing:Chinese Academy of Sciences,2019.(in Chinese) [7] SHAWE-TAYLOR J,ŽLIČAR B.Novelty detection with one-class support vector machines[M].Berlin,Germany:Springer,2015. [8] LI Y Q,LEI M J,LIU P P,et al.A novel framework for anomaly detection for satellite momentum wheel based on optimized SVM and Huffman-multi-scale entropy[J].Entropy,2021,23(8):1062. [9] 董静怡,庞景月,彭宇,等.集成LSTM的航天器遥测数据异常检测方法[J].仪器仪表学报,2019,40(7):22-29. DONG J Y,PANG J Y,PENG Y,et al.Spacecraft telemetry data anomaly detection method based on ensemble LSTM[J].Chinese Journal of Scientific Instrument,2019,40(7):22-29.(in Chinese) [10] WANG Y,WU Y,YANG Q,et al.Anomaly detection of spacecraft telemetry data using temporal convolution network[C]//Proceedings of IEEE International Instrumentation and Measurement Technology Conference.Washington D.C.,USA:IEEE Press,2021:1-5. [11] CHEN J F,PI D C,WU Z Y,et al.Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM[J].Acta Astronautica,2021,180:232-242. [12] 王婵,王慧泉,金仲和.皮纳卫星遥测数据异常检测聚类分析方法[J].哈尔滨工业大学学报,2018,50(4):110-116. WANG C,WANG H Q,JIN Z H.Pico-satellite telemetry anomaly detection through clustering[J].Journal of Harbin Institute of Technology,2018,50(4):110-116.(in Chinese) [13] ZHU Y C,XI D B,SONG B W,et al.Modeling users' behavior sequences with hierarchical explainable network for cross-domain fraud detection[C]//Proceedings of the Web Conference 2020.New York,USA:ACM Press,2020:928-938. [14] MALLICK T,BALAPRAKASH P,RASK E,et al.Transfer learning with graph neural networks for short-term highway traffic forecasting[C]//Proceedings of the 25th International Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2021:10367-10374. [15] CHEN L.Deep transfer learning for static malware classification[EB/OL].[2022-03-14].https://arxiv.org/abs/1812.07606. [16] OLIVEIRA J S,SOUZA G B,ROCHA A R,et al.Cross-domain deep face matching for real banking security systems[C]//Proceedings of the 7th International Conference on eDemocracy & eGovernment.Washington D.C.,USA:IEEE Press,2018:21-28. [17] AHMED U,KHAN A,KHAN S H,et al.Transfer learning and meta classification based deep churn prediction system for telecom industry[EB/OL].[2022-03-14].https://arxiv.org/abs/1901.06091. [18] 刘飞,陈仁文,邢凯玲,等.基于迁移学习与深度残差网络的滚动轴承快速故障诊断算法[J].振动与冲击,2022,41(3):154-164. LIU F,CHEN R W,XING K L,et al.Fast fault diagnosis algorithm for rolling bearing based on transfer learning and deep residual network[J].Journal of Vibration and Shock,2022,41(3):154-164.(in Chinese) [19] LI X,ZHENG J,LI M,et al.Frequency-domain fusing convolutional neural network:a unified architecture improving effect of domain adaptation for fault diagnosis[J].Sensors (Basel,Switzerland),2021,21(2):450. [20] 王晋东,陈益强.迁移学习导论[M].北京:电子工业出版社,2021. WANG J D,CHEN Y Q.Introduction to transfer learning[M].Beijing:Publishing House of Electronics Industry,2021.(in Chinese) [21] SUN B,SAENKO K.Deep CORAL:correlation alignment for deep domain adaptation[M].Berlin,Germany:Springer,2016. [22] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [23] ZHAO M H,ZHONG S S,FU X Y,et al.Deep residual shrinkage networks for fault diagnosis[J].IEEE Transactions on Industrial Informatics,2020,16(7):4681-4690. [24] 马文臻,王爱玲,李旭东,等.基于GBDT的卫星工程参数异常检测[J].计算机系统应用,2022,31(1):138-144. MA W Z,WANG A L,LI X D,et al.Anomaly detection of satellite engineering data based on GBDT[J].Computer Systems & Applications,2022,31(1):138-144.(in Chinese) [25] LI X D,HU Y,ZHENG J H,et al.Central moment discrepancy based domain adaptation for intelligent bearing fault diagnosis[J].Neurocomputing,2021,429:12-24. |