[1] WU Z H, PAN S R, CHEN F W, et al.A comprehensive survey on graph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1):4-24. [2] TANG J, QU M, MEI Q.PTE:predictive text embedding through large-scale heterogeneous text networks[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2015:1165-1174. [3] WANG S H, TANG J L, AGGARWAL C, et al.Linked document embedding for classification[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management.New York, USA:ACM Press, 2016:115-124. [4] PEROZZI B, Al-RFOU R, SKIENA S.Deepwalk:online learning of social representations[EB/OL].[2021-11-10].https://arxiv.org/pdf/1403.6652.pdf. [5] WANG S H, TANG J L, AGGARWAL C, et al.Signed network embedding in social media[C]//Proceedings of SIAM International Conference on Data Mining.Philadelphia, USA:Society for Industrial and Applied Mathematics, 2017:327-335. [6] TIAN F, GAO B, CUI Q, et al.Learning deep representations for graph clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2014:1293-1299. [7] ALLAB K, LABIOD L, NADIF M.A semi-NMF-PCA unified framework for data clustering[J].IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1):2-16. [8] DAI H J, LI H, TIAN T, et al.Adversarial attack on graph structured data[EB/OL].[2021-11-10].https://arxiv.org/pdf/1806.02371.pdf. [9] ZÜGNER D, AKBARNEJAD A, GÜNNEMANN S.Adversarial attacks on neural networks for graph data[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:2847-2856. [10] WANG X Y, EATON J, HSIEH C J, et al.Attack graph convolutional networks by adding fake nodes[EB/OL].[2021-11-10].https://arxiv.org/pdf/1810.10751.pdf. [11] 吴翼腾, 刘伟, 于溆乔.基于参数差异假设的图卷积网络对抗性攻击[J/OL].电子学报:1-13[2021-11-10].http://kns.cnki.net/kcms/detail/11.2087.TN.20211018.1732.002.html. WU Y T, LIU W, YU X Q.Adversarial attacks on graph convolution networks based on parameter discrepancy hypothesis[J/OL].Acta Electronica Sinica:1-13[2021-11-10].http://kns.cnki.net/kcms/detail/11.2087.TN.20211018.1732.002.html. (in Chinese) [12] 吴翼腾, 刘伟, 于洪涛.图神经网络的标签翻转对抗攻击[J].通信学报, 2021, 42(9):65-74. WU Y T, LIU W, YU H T.Label flipping adversarial attack on graph neural network[J].Journal on Communications, 2021, 42(9):65-74.(in Chinese) [13] 姜妍, 张立国.面向深度学习模型的对抗攻击与防御方法综述[J].计算机工程, 2021, 47(1):1-11. JIANG Y, ZHANG L G.Survey of adversarial attacks and defense methods for deep learning model[J].Computer Engineering, 2021, 47(1):1-11.(in Chinese) [14] JIN W, LI Y X, XU H, et al.Adversarial attacks and defenses on graphs:a review and empirical study[EB/OL].[2021-11-10].https://arxiv.org/abs/2003.00653v2. [15] CHEN L, LI J T, PENG J Y, et al.A survey of adversarial learning on graphs[EB/OL].[2021-11-10].https://arxiv.org/abs/2003.05730?. [16] WU Y T, LIU W, HU X B, et al.Parameter discrepancy hypothesis:adversarial attack for graph data[J].Information Sciences, 2021, 577:234-244. [17] LIN X X, ZHOU C, YANG H, et al.Exploratory adversarial attacks on graph neural networks[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2020:1136-1141. [18] XU K D, CHEN H G, LIU S J, et al.Topology attack and defense for graph neural networks:an optimization perspective[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2019:3961-3967. [19] 陈晋音, 张敦杰, 黄国瀚, 等.面向图神经网络的对抗攻击与防御综述[J].网络与信息安全学报, 2021, 7(3):1-28. CHEN J Y, ZHANG D J, HUANG G H, et al.Adversarial attack and defense on graph neural networks:a survey[J].Chinese Journal of Network and Information Security, 2021, 7(3):1-28.(in Chinese) [20] SUN M J, TANG J, LI H C, et al.Data poisoning attack against unsupervised node embedding methods[EB/OL].[2021-11-10].https://arxiv.org/pdf/1810.12881.pdf. [21] LIU S J, CHEPURI S P, FARDAD M, et al.Sensor selection for estimation with correlated measurement noise[J].IEEE Transactions on Signal Processing, 2016, 64(13):3509-3522. [22] SEN P, NAMATA G, BILGIC M, et al.Collective classification in network data[J].AI Magazine, 2008, 29(3):93. [23] MCCALLUM A, NIGAM K, RENNIE J D M, et al.Automating the construction of Internet portals with machine learning[J].Information Retrieval, 2000, 3(2):127-163. [24] ADAMIC L A, GLANCE N.The political blogosphere and the 2004 US election:divided they blog[C]//Proceedings of the 3rd International Workshop on Link Discovery.New York, USA:ACM Press, 2005:36-43. [25] WANIEK M, MICHALAK T P, WOOLDRIDGE M J, et al.Hiding individuals and communities in a social network[J].Nature Human Behaviour, 2018, 2(2):139-147. [26] ZÜGNER D, GÜNNEMANN S.Adversarial attacks on graph neural networks via meta learning[EB/OL].[2021-11-10].https://arxiv.org/pdf/1902.08412.pdf. |