[1] 郑强斌.SAR图像中舰船检测与识别算法的研究及其硬件实现[D].西安:西安理工大学,2018. ZHENG Q B.The research of ship detection and recognition algorithm in SAR image and its hardware[D].Xi'an:Xi'an University of Technology,2018.(in Chinese) [2] 丛龙剑.基于深度学习的SAR舰船目标识别方法研究[D].北京:中国航天科技集团公司第一研究院,2018. CONG L J.The research of SAR ship target recognition based on deep learning[D].Beijing:The First Academy of China Aerospace Science and Technology Corporation,2018.(in Chinese) [3] 张荻.基于深度学习的SAR图像舰船目标识别方法研究[D].长沙:国防科技大学,2017. ZHANG D.Study on recognition of ships in SAR imagery based on deep learning methods[D].Changsha:National University of Defense Technology,2017.(in Chinese) [4] 邵嘉琦,曲长文,李健伟,等.基于CNN的不平衡SAR图像舰船目标识别[J].电光与控制,2019,26(9):90-97. SHAO J Q,QU C W,LI J W,et al.Ship target recognition of imbalanced SAR image based on CNN[J].Electronics Optics & Control,2019,26(9):90-97.(in Chinese) [5] 仇荣超,娄树理,李廷军,等.多波段红外图像的海面舰船目标检测[J].光谱学与光谱分析,2019,39(3):698-704. QIU R C,LOU S L,LI T J,et al.Research on detection of ship target at sea based on multi-spectral infrared images[J].Spectroscopy and Spectral Analysis,2019,39(3):698-704.(in Chinese) [6] 李敏.基于红外偏振成像的舰船目标识别及其系统实现[D].烟台:烟台大学,2017. LI M.Research on ship target tracking and system realization based on infrared polarization imaging[D].Yantai:Yantai University,2017.(in Chinese) [7] 荆天.基于模糊数学模型的舰船红外成像目标智能识别方法[J].舰船科学技术,2019,41(4):181-183. JING T.Intelligent recognition method of ship infrared imaging target based on fuzzy mathematical model[J].Ship Science and Technology,2019,41(4):181-183.(in Chinese) [8] 卢嫄.曲线进化的多波段舰船图像目标精准识别系统[J].舰船科学技术,2019,41(10):169-171. LU Y.Design of accurate target recognition system for multi-band ship image based on curve evolution[J].Ship Science and Technology,2019,41(10):169-171.(in Chinese) [9] HUANG X,BIGGIO B,BROWN G,et al.Is feature selection secure against training data poisoning?[C]//Proceedings of the 32nd International Conference on Machine Learning.New York,USA:ACM Press,2015:1689-1698. [10] 李盼,赵文涛,刘强,等.机器学习安全性问题及其防御技术研究综述[J].计算机科学与探索,2018,12(2):171-184. LI P,ZHAO W T,LIU Q,et al.Security issues and their countermeasuring techniques of machine learning:a survey[J].Journal of Frontiers of Computer Science and Technology,2018,12(2):171-184.(in Chinese) [11] AKHTAR N,MIAN A.Threat of adversarial attacks on deep learning in computer vision:a survey[J].IEEE Access,2018,6:14410-14430. [12] CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//Proceedings of 2017 IEEE Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2017:39-57. [13] DZIUGAITE G K,GHAHRAMANI Z,ROY D M.A study of the effect of JPG compression on adversarial images[EB/OL].(2016-08-02)[2020-05-10].https://arxiv.org/pdf/1608.00853.pdf. [14] MOOSAVI-DEZFOOLI S M,SHRIVASTAVA A,TUZEL O.Divide,denoise,and defend against adversarial attacks[EB/OL].(2019-04-25)[2020-05-10].https://arxiv.org/pdf/1802.06806.pdf. [15] ZHANG Y,LIANG P.Defending against whitebox adversarial attacks via randomized discretization[EB/OL].(2019-05-25)[2020-05-10].https://arxiv.org/pdf/1903.10586.pdf. [16] YU Y,YU P,LI W.AuxBlocks:defense adversarial example via auxiliary blocks[EB/OL].(2019-02-18)[2020-05-10].https://arxiv.org/pdf/1902.06415.pdf. [17] ZHENG S,SONG Y,LEUNG T,et al.Improving the robustness of deep neural networks via stability training[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:4480-4488. [18] 易平,王科迪,黄程,等.人工智能对抗攻击研究综述[J].上海交通大学学报,2018,52(10):1298-1306. YI P,WANG K D,YI P,et al.Adversarial attacks in artificial intelligence:a survey[J].Journal of Shanghai Jiaotong University,2018,52(10):1298-1306.(in Chinese) [19] GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversial examples[EB/OL].(2015-03-20)[2020-05-10].https://arxiv.org/pdf/1412.6572.pdf. [20] PAPERNOT N,MCDANIEL P,JHA S,et al.The limitations of deep learning in adversarial settings[C]//Proceedings of 2016 IEEE European Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2016:1-5. [21] MOOSAVI-DEZFOOLI S,FAWZI A,FROSSARD P.DeepFool:a simple and accurate method to fool deep neural networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1-5. [22] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2020-05-10].https://arxiv.org/pdf/1409.1556.pdf. [23] LIU Y,CHENG M M,HU X W,et al.Richer convolutional features for edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(8):1939-1946. |