[1] |
BLEI D M,NG A Y,JORDAN M I.Latent Dirichlet allocation[J].The Journal of Machine Learning Research,2003,3(4/5):993-1022.
|
[2] |
MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2018-06-05].https://arxiv.org/pdf/1301.3781.pdf.
|
[3] |
熊富林,邓怡豪,唐晓晟.Word2vec的核心架构及其应用[J].南京师范大学学报(工程技术版),2015,15(1):43-48.
|
[4] |
周练.Word2vec的工作原理及应用探究[J].科技情报开发与经济,2015,25(2):145-148.
|
[5] |
秦春秀,祝婷,赵捧未,等.自然语言语义分析研究进展[J].图书情报工作,2014,58(22):130-137.
|
[6] |
ZHAI Chengxiang.Probabilistic topic models for text data retrieval and analysis[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2017:1399-1401.
|
[7] |
张勇.基于词性与LDA主题模型的文本分类技术研究[D].合肥:安徽大学,2016.
|
[8] |
BAO Yang,COLLIER N,DATTA A.A partially supervised cross-collection topic model for cross-domain text classification[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2013:239-248.
|
[9] |
MEHROTRA R,SANNER S,BUNTINE W,et al.Improving LDA topic models for microblogs via tweet pooling and automatic labeling[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2013:889-892.
|
[10] |
NGUYEN D Q,BILLINGSLEY R,DU L,et al.Improving topic models with latent feature word representations[J].Transactions of the Association for Computational Linguistics,2015,3:299-313.
|
[11] |
WANG Zhibo,MA Long,ZHANG Yanqing.A hybrid document feature extraction method using latent Dirichlet allocation and Word2Vec[C]//Proceedings of International Conference on Data Science in Cyberspace.Washington D.C.,USA:IEEE Press,2016:98-103.
|
[12] |
NIU Liqiang,DAI Xinyu,ZHANG Jianbing,et al.Topic2Vec:learning distributed representations of topics[C]//Proceedings of International Conference on Asian Language Processing.Washington D.C.,USA:IEEE Press,2015:193-196.
|
[13] |
WANG Zhibo,ZHANG Yanqing.A text information retrieval method by integrating global and local textual information[C]//Proceedings of the 40th Annual Computer Software and Applications Conference.Washington D.C.,USA:IEEE Press,2016:504-505
|
[14] |
张群,王红军,王伦文.词向量与LDA相融合的短文本分类方法[J].现代图书情报技术,2016(12):27-35.
|
[15] |
SHI Min,LIU Jianxun,ZHOU Dong,et al.WE-LDA:a word embeddings augmented LDA model for Web services clustering[C]//Proceedings of IEEE International Conference on Web Services.Washington D.C.,USA:IEEE Press,2017:9-16.
|
[16] |
陈磊,李俊.基于LF-LDA和Word2vec的文本表示模型研究[J].电子技术,2017,46(7):1-5.
|
[17] |
XU Hongyang,LU Hui,YANG Guowei,et al.Sentiment analysis of Chinese version using SVM & RNN[C]//Proceedings of the 6th International Conference on Information Engineering.New York,USA:ACM Press,2017:1-5.
|
[18] |
梁艳红,檀润华,马建红.面向产品创新设计的专利文本分类研究[J].计算机集成制造系统,2013,19(2):382-390.
|
[19] |
周群,左文革,陈仕吉.基于百分位数的文献计量指标研究综述[J].现代图书情报技术,2013(7/8):82-88.
|
[20] |
KRISHNAMURTHI K,PANUGANTI V R,BULUSU V V.Understanding document semantics from summaries[J].ACM Transactions on Asian and Low-resource Language Information Processing,2016,16(1):1-20.
|