作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (6): 281-287. doi: 10.19678/j.issn.1000-3428.0054730

• 开发研究与工程应用 • 上一篇    下一篇

基于SAE-GA-SVM模型的雷达新型干扰识别

罗彬珅, 刘利民, 董健, 刘璟麒   

  1. 陆军工程大学 电子与光学工程系, 石家庄 050003
  • 收稿日期:2019-04-25 修回日期:2019-06-21 发布日期:2019-06-30
  • 作者简介:罗彬珅(1994-),男,硕士研究生,主研方向为目标探测与识别;刘利民,教授、博士生导师;董健,讲师、博士;刘景麒,硕士研究生。
  • 基金资助:
    “十三五”装备预研项目(61404150402)。

Radar New Jamming Identification Based on SAE-GA-SVM Model

LUO Binshen, LIU Limin, DONG Jian, LIU Jingqi   

  1. Department of Electronic and Optical Engineering, Army Engineering University(Shijiazhuang Campus), Shijiazhuang 050003, China
  • Received:2019-04-25 Revised:2019-06-21 Published:2019-06-30

摘要: 针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特征提取方法提取47维特征。为有效去除冗余信息并保持较高的识别率,运用深度学习中的稀疏自编码器(SAE),通过SAE结构建立高维空间和低维空间的双向映射,从而获得原始数据的相应最优低维表示。利用遗传算法优化支持向量机的惩罚因子和核函数参数,构建基于SAE-GA-SVM的雷达新型干扰识别检测模型。仿真结果表明,该模型能够有效降低特征维度,相比传统的GA-SVM检测模型识别准确率提高10%。

关键词: 新型干扰, 特征提取, 特征降维, 堆叠自编码器, 遗传算法

Abstract: Aiming at the identification problems that Smeared Spectrum(SMSP),Chopping and Interleaving(C&I),smart noise jamming,the composite jamming of noise amplitude modulation and noise range deception,and the composite jamming of noise frequency modulation and noise range deception.This paper proposes a SAE-GA-SVM-based identification model algorithm,which can identify.The algorithm constructs a mathematical model for target echo and jamming signals,employing a multi-domain joint feature extraction method to extract the 47-dimensional features.In order to effectively remove redundant data and maintain a high identification rate,the Stacked Auto-Encoder(SAE) algorithm in deep learning is adopted.By using the SAE structure,a mutual mapping between high-dimensional space and low-dimensional space is constructed to obtain the corresponding optimal low-dimensional representation of raw data.Then the Genetic Algorithm(GA) is used to optimize the penalty factor and kernel function parameters of Support Vector Machine(SVM),and on this basis the SAE-GA-SVM-based model for new radar jamming identification is established.Simulation results show that the proposed model can effectively reduce the feature dimension,and its classification accuracy is 10% higher than that of the traditional detection models.

Key words: new jamming, feature extraction, feature dimension reduction, Stacked Auto-Encoder(SAE), Genetic Algorithm(GA)

中图分类号: