1 |
|
|
|
2 |
AMODIO A, ERMIDORO M, MAGGI D, et al. Automatic detection of driver impairment based on pupillary light reflex. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (8): 3038- 3048.
doi: 10.1109/TITS.2018.2871262
|
3 |
LAL S K L, CRAIG A. A critical review of the psycho-physiology of driver fatigue. Biological Psychology, 2001, 55 (3): 173- 194.
doi: 10.1016/S0301-0511(00)00085-5
|
4 |
LI K N, GONG Y B, REN Z L. A fatigue driving detection algorithm based on facial multi-feature fusion. IEEE Access, 2020, 8, 101244- 101259.
doi: 10.1109/ACCESS.2020.2998363
|
5 |
吕秀丽, 刘希凤, 白永强. 基于SSD的多因素融合的驾驶疲劳检测研究. 电子测量技术, 2022, 45 (15): 138- 143.
URL
|
|
LÜ X L, LIU X F, BAI Y Q. Research on driving fatigue detection based on SSD multi-factor fusion. Electronic Measurement Technology, 2022, 45 (15): 138- 143.
URL
|
6 |
MAGÁN E, SESMERO M P, ALONSO-WEBER J M, et al. Driver drowsiness detection by applying deep learning techniques to sequences of images. Applied Sciences, 2022, 12 (3): 1145.
doi: 10.3390/app12031145
|
7 |
王红君, 白浩, 赵辉, 等. 基于计算机视觉的驾驶员疲劳状态检测预警技术. 科学技术与工程, 2022, 22 (12): 4887- 4894.
doi: 10.3969/j.issn.1671-1815.2022.12.027
|
|
WANG H J, BAI H, ZHAO H, et al. Driver fatigue state detection and early warning technology based on computer vision. Science Technology and Engineering, 2022, 22 (12): 4887- 4894.
doi: 10.3969/j.issn.1671-1815.2022.12.027
|
8 |
张铭元. 基于核函数极限学习机的非接触式疲劳驾驶检测方法研究[D]. 杭州: 杭州电子科技大学, 2022.
|
|
ZHANG M Y. Research on non-contact fatigue driving detection method based on kernel function limit learning machine[D]. Hangzhou: Hangzhou Dianzi University, 2022. (in Chinese)
|
9 |
纪世雨. 一种改进型KCF的疲劳驾驶检测方法. 计算机测量与控制, 2022, 30 (1): 52- 59.
URL
|
|
JI S Y. An improved KCF fatigue driving detection method. Computer Measurement & Control, 2022, 30 (1): 52- 59.
URL
|
10 |
ROZALI R A F, FADILAH S I, SHARIFF A R M, et al. Driver Drowsiness Detection and Monitoring System (DDDMS). International Journal of Advanced Computer Science and Applications, 2022, 13 (6): 769- 775.
|
11 |
WU S L, SUO Z H, CHEN H D, et al. Road rage detection algorithm based on fatigue driving and facial feature point location. Neural Computing and Applications, 2022, 34 (15): 12361- 12371.
doi: 10.1007/s00521-021-06856-0
|
12 |
LI Z, REN J. Driver fatigue detection algorithm based on video image[C]//Proceedings of the 14th International Conference on Measuring Technology and Mechatronics Automation. Washington D. C., USA: IEEE Press, 2022: 346-350.
|
13 |
ZHU T J, ZHANG C, WU T, et al. Research on a real-time driver fatigue detection algorithm based on facial video sequences. Applied Sciences, 2022, 12 (4): 2224.
doi: 10.3390/app12042224
|
14 |
陆荣秀, 张笔豪, 莫振龙. 基于脸部特征和头部姿态的疲劳检测方法. 系统仿真学报, 2022, 34 (10): 2279- 2292.
doi: 10.16182/j.issn1004731x.joss.21-0583
|
|
LU R X, ZHANG B H, MO Z L. Fatigue detection method based on facial features and head posture. Journal of System Simulation, 2022, 34 (10): 2279- 2292.
doi: 10.16182/j.issn1004731x.joss.21-0583
|
15 |
陈志琳. 基于面部特征的疲劳驾驶检测系统设计与实现[D]. 西安: 西安工业大学, 2022.
|
|
CHEN Z L. Design and implementation of fatigue driving detection system based on facial features[D]. Xi'an: Xi'an Technological University, 2022. (in Chinese)
|
16 |
白浩. 基于深度学习的疲劳检测分级预警系统研究[D]. 天津: 天津理工大学, 2022.
|
|
BAI H. Research on hierarchical early warning system of fatigue detection based on deep learning[D]. Tianjin: Tianjin University of Technology, 2022. (in Chinese)
|
17 |
沈锋. 基于深度学习的人眼疲劳状态监测系统研究[D]. 广汉: 中国民用航空飞行学院, 2022.
|
|
SHEN F. Research on human eye fatigue monitoring system based on deep learning[D]. Guanghan: Civil Aviation Flight University of China, 2022. (in Chinese)
|
18 |
INKEAW P, SRIKUMMOON P, CHAIJARUWANICH J, et al. Automatic driver drowsiness detection using artificial neural network based on visual facial descriptors: pilot study. Nature and Science of Sleep, 2022, 14, 1641- 1649.
doi: 10.2147/NSS.S376755
|
19 |
CHEN J, YAN M, ZHU F, et al. Fatigue driving detection method based on combination of BP neural network and time cumulative effect. Sensors, 2022, 22 (13): 4717.
doi: 10.3390/s22134717
|
20 |
CHINTHALACHERVU R, TEJA I, AJAY KUMAR M, et al. Driver drowsiness detection and monitoring system using machine learning. Journal of Physics: Conference Series, 2022, 2325 (1): 012057.
doi: 10.1088/1742-6596/2325/1/012057
|
21 |
MIN J L, CAI M, GOU C, et al. Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic processing pipeline. Neural Computing and Applications, 2023, 35 (12): 8859- 8872.
|
22 |
ZHANG C, LU X B, HUANG Z L, et al. A driver fatigue recognition algorithm based on spatio-temporal feature sequence[C]//Proceedings of the 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
23 |
WAN Y, LIU M, FAN J H, et al. Multi-feature analysis fatigue driving based on conditional local neural fields algorithm detection method. Journal of Physics: Conference Series, 2019, 1237 (2): 022157.
doi: 10.1088/1742-6596/1237/2/022157
|
24 |
梁元辉, 吴清乐, 曹立佳. 基于多特征融合的眼睛状态检测算法研究. 计算机技术与发展, 2021, 31 (2): 97- 100.
URL
|
|
LIANG Y H, WU Q L, CAO L J. Research on eye state detection algorithm based on multi-feature fusion. Computer Technology and Development, 2021, 31 (2): 97- 100.
URL
|
25 |
YOU F, LI X L, TU H Q. A new algorithm based on cascaded convolutional neural network for driver fatigue detection[C]//Proceedings of CICTP'19. Washington D. C., USA: IEEE Press, 2019: 379-391.
|
26 |
朱艳, 谢忠志, 于雯, 等. 低光照环境下基于面部特征点的疲劳驾驶检测技术. 汽车安全与节能学报, 2022, 13 (2): 282- 289.
doi: 10.3969/j.issn.1674-8484.2022.02.008
|
|
ZHU Y, XIE Z Z, YU W, et al. Fatigue-driving detect-technology in low light environment based on facial feature points. Journal of Automotive Safety and Engergy, 2022, 13 (2): 282- 289.
doi: 10.3969/j.issn.1674-8484.2022.02.008
|
27 |
陈磊. 基于视频的车内侧脸特征轮廓提取方法研究[D]. 重庆: 重庆大学, 2019.
|
|
CHEN L. Research on the method of extracting the feature contour of the inside face of the car based on video[D]. Chongqing: Chongqing University, 2019. (in Chinese)
|
28 |
刘帝, 黄妍妍, 孟雪. 一种基于人眼识别的疲劳驾驶检测算法. 电子技术与软件工程, 2021, (18): 139- 140.
URL
|
|
LIU D, HUANG Y Y, MENG X. A fatigue driving detection algorithm based on human eye recognition. Electronic Technology & Software Engineering, 2021, (18): 139- 140.
URL
|
29 |
刘东华, 刘庆华, 李杨, 等. 基于PERCLOS的疲劳驾驶检测研究. 计算机与数字工程, 2022, 50 (7): 1583-1586, 1608.
doi: 10.3969/j.issn.1672-9722.2022.07.034
|
|
LIU D H, LIU Q H, LI Y, et al. Research on fatigue driving detection based on PERCLOS. Computer and Digital Engineering, 2022, 50 (7): 1583-1586, 1608.
doi: 10.3969/j.issn.1672-9722.2022.07.034
|
30 |
|
31 |
王欣, 吴键, 孙涵, 等. 基于DSP的疲劳驾驶视觉检测与预警系统设计. 测试技术学报, 2020, 34 (6): 506- 513.
doi: 10.3969/j.issn.1671-7449.2020.06.009
|
|
WANG X, WU J, SUN H, et al. Design of visual detection and early warning system for fatigue driving based on DSP. Journal of Test and Measurement Technology, 2020, 34 (6): 506- 513.
doi: 10.3969/j.issn.1671-7449.2020.06.009
|
32 |
ZHANG Y, LI J Y, LIU H, et al. Fatigue driving detection with modified Ada-Boost and fuzzy algorithm[C]//Proceedings of Chinese Control and Decision Conference. Washington D. C., USA: IEEE Press, 2018: 5971-5974.
|
33 |
赵起. 基于MobileNet-V3的疲劳驾驶状态检测算法研究[D]. 杭州: 杭州电子科技大学, 2022.
|
|
ZHAO Q. Research on fatigue driving state detection algorithm based on MobileNet-V3[D]. Hangzhou: Hangzhou Dianzi University, 2022. (in Chinese)
|
34 |
|
35 |
王俊杰, 汪洋堃, 张峰, 等. 基于CNN和SVM的疲劳驾驶闭眼特征实时检测. 计算机系统应用, 2021, 30 (6): 118- 126.
URL
|
|
WANG J J, WANG Y K, ZHANG F, et al. Real-time detection for eye closure feature of fatigue driving based on CNN and SVM. Computer Systems & Applications, 2021, 30 (6): 118- 126.
URL
|
36 |
陈藩, 施一萍, 胡佳玲, 等. 基于卷积神经网络的学生课堂疲劳检测算法. 传感器与微系统, 2022, 41 (6): 153- 156.
URL
|
|
CHEN F, SHI Y P, HU J L, et al. Algorithm of student's classroom fatigue detection based on CNN. Transducer and Microsystem Technologies, 2022, 41 (6): 153- 156.
URL
|
37 |
|
38 |
敖邦乾, 杨莎, 令狐金卿, 等. 基于级联神经网络疲劳驾驶检测系统设计. 系统仿真学报, 2022, 34 (2): 323- 333.
URL
|
|
AO B Q, YANG S, LINGHU J Q, et al. Design of fatigue driving detection system based on cascaded neural network. Journal of System Simulation, 2022, 34 (2): 323- 333.
URL
|
39 |
HUANG R, WANG Y, LI Z J, et al. RF-DCM: multi-granularity deep convolutional model based on feature recalibration and fusion for driver fatigue detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (1): 630- 640.
|
40 |
AHMED M, MASOOD S, AHMAD M, et al. Intelligent driver drowsiness detection for traffic safety based on multi CNN deep model and facial subsampling. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 19743- 19752.
|
41 |
王晓旭. 驾驶员面部疲劳检测预警系统的研究与应用[D]. 沈阳: 辽宁大学, 2022.
|
|
WANG X X. Research and application of driver's facial fatigue detection and early warning system[D]. Shenyang: Liaoning University, 2022. (in Chinese)
|
42 |
NASEEM A, KULDEEP S Y, MANIR A, et al. An integrated approach for eye centre localization using deep networks and rectangular-intensity-gradient technique. Journal of King Saud University-Computer and Information Sciences, 2022, 34 (9): 7153- 7167.
|
43 |
BAJAJ J S, KUMAR N, KAUSHAL R K. AI based novel approach to detect driver drowsiness. ECS Transactions, 2022, 107 (1): 4651- 4658.
|
44 |
|
45 |
DU G L, ZHANG L L, SU K, et al. A multimodal fusion fatigue driving detection method based on heart rate and PERCLOS. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 21810- 21820.
doi: 10.1109/TITS.2022.3176973
|
46 |
ZENG L Q, ZHOU K, HAN Q W, et al. An fNIRS labeling image feature-based customized driving fatigue detection method. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (9): 12493- 12509.
|
47 |
潘志庚, 刘荣飞, 张明敏. 基于模糊综合评价的疲劳驾驶检测算法研究. 软件学报, 2019, 30 (10): 2954- 2963.
URL
|
|
PAN Z G, LIU R F, ZHANG M M. Research on fatigue driving detection algorithm based on fuzzy comprehensive evaluation. Journal of Software, 2019, 30 (10): 2954- 2963.
URL
|
48 |
FERRARIO V F, SFORZA C, SERRAO G, et al. Active range of motion of the head and cervical spine: a three-dimensional investigation in healthy young adults. Journal of Orthopaedic Research, 2002, 20 (1): 122- 129.
doi: 10.1016/S0736-0266(01)00079-1
|
49 |
PANDEY N N, MUPPALANENI N B. A novel drowsiness detection model using composite features of head, eye, and facial expression. Neural Computing and Applications, 2022, 34 (16): 13883- 13893.
doi: 10.1007/s00521-022-07209-1
|
50 |
BAKHEET S, AL-HAMADI A. A framework for instantaneous driver drowsiness detection based on improved HOG features and Naïve Bayesian classification. Brain Sciences, 2021, 11 (2): 240.
doi: 10.3390/BRAINSCI11020240
|
51 |
OF O, CARRIERS M. PERCLOS: a valid psychophy-siological measure of alertness as assessed by psychomotor vigilance. October, 1998, 31 (5): 1237- 1252.
|
52 |
TAO H H, ZHANG G Y, ZHAO Y, et al. Real-time driver fatigue detection based on face alignment[C]// Proceedings of the 9th International Conference on Digital Image Processing. Washington D. C., USA: IEEE Press, 2017: 6-11.
|
53 |
LYAPUNOV S I, SHOSHINA I I, LYAPUNOV I S. Tremor eye movements as an objective marker of driver's fatigue. Human Physiology, 2022, 48 (1): 71- 77.
|
54 |
ZHUANG Q Y, ZHANG K H, WANG J Y, et al. Driver fatigue detection method based on eye states with pupil and iris segmentation. IEEE Access, 2020, 8, 173440- 173449.
doi: 10.1109/ACCESS.2020.3025818
|
55 |
|
56 |
BAKKER B, ZABŁOCKI B, BAKER A, et al. A multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditions. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4791- 4800.
doi: 10.1109/TITS.2021.3090272
|
57 |
XIANG W B, WU X C, LI C C, et al. Driving fatigue detection based on the combination of multi-branch 3D-CNN and attention mechanism. Applied Sciences, 2022, 12 (9): 4689.
|
58 |
HUSAIN S S, MIR J, ANWAR S M, et al. Development and validation of a deep learning-based algorithm for drowsiness detection in facial photographs. Multimedia Tools and Applications, 2022, 81 (15): 20425- 20441.
doi: 10.1007/s11042-022-12433-x
|
59 |
SAVAŞ B K, BECERIKLI Y. Behavior-based driver fatigue detection system with deep belief network. Neural Computing and Applications, 2022, 34 (16): 14053- 14065.
|
60 |
WANG J J, WANG Y K, DAI Y, et al. Cooperative detection method for distracted and fatigued driving behaviors with readily embedded system implementation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 13.
|
61 |
AKROUT B, MAHDI W. A novel approach for driver fatigue detection based on visual characteristics analysis. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (1): 527- 552.
|