[1] KAPLAN S, GUVENSAN M A, YAVUZ A G, et al. Driver behavior analysis for safe driving:a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3017-3032. [2] CHAI M, LI S W, SUN W C, et al. Drowsiness monitoring based on steering wheel status[J]. Transportation Research Part D:Transport and Environment, 2019, 66:95-103. [3] MCDONALD A D, SCHWARZ C, LEE J D, et al. Real time detection of drowsiness related lane departures using steering wheel angle[C]//Proceedings of the 56th Annual Meeting of the Human Factors and Ergonomics Society.Boston, USA:[s.n.], 2012:1-5. [4] 郭孜政, 牛琳博, 吴志敏, 等. 基于EEG的驾驶疲劳识别算法及其有效性验证[J]. 北京工业大学学报, 2017, 43(6): 929-934. GUO Z Z, NIU L B, WU Z M, et al. Driving fatigue recognition algorithm based on EEG and its validity verification[J]. Journal of Beijing University of Technology, 2017, 43(6): 929-934.(in Chinese) [5] 徐礼胜, 张闻勖, 庞宇轩, 等. 基于短时心电信号的疲劳驾驶检测算法[J]. 东北大学学报:自然科学版, 2019, 40(7): 937-941. XU L S, ZHANG W X, PANG Y X, et al. Fatigue driving detection algorithm based on short time ECG signal[J]. Journal of Northeast University:Natural Science Edition, 2019, 40(7): 937-941.(in Chinese) [6] LUO H, QIU T, LIU C, et al. Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy[J]. Biomedical Signal Processing and Control, 2019, 51:50-58. [7] GROMER M, SALB D, WALZER T, et al. ECG sensor for detection of driver's drowsiness[J]. Procedia Computer Science, 2019, 159:1938-1946. [8] 王琳, 化成城, 姜鑫, 等. 基于颈腰部肌电及脑电信号的疲劳驾驶检测[J]. 东北大学学报(自然科学版), 2018, 39(1): 102-107. WANG L, HUA C C, JIANG X, et al. Fatigue driving detection based on cervical and lumbar EMG and EEG signals[J]. Journal of Northeast University:Natural Science Edition, 2018, 39(1): 102-107.(in Chinese) [9] ARTANTO D, SULISTYANTO M P, PRANOWO I D, et al. Drowsiness detection system based on eye-closure using a low-cost EMG and ESP8266[C]//Proceedings of International Conference on Information Technology, Information Systems and Electrical Engineering.Washington D.C., USA:IEEE Press, 2017:1-5. [10] POURSADEGHIYAN M, MAZLOUMI A, SARAJI G N, et al. Using image processing in the proposed drowsiness detection system design[J]. Iranian Journal of Public Health, 2018, 47(9): 1371-1378. [11] KNAPIK M, CYGANEK B.Driver's fatigue recognition based on yawn detection in thermal images[J]. Neurocomputing, 2019, 338:274-292. [12] 刘明周, 蒋倩男, 扈静.基于面部几何特征及手部运动特征的驾驶员疲劳检测[J]. 机械工程学报, 2019, 55(2): 32-40. LIU M Z, JIANG Q N, HU J.Driver fatigue detection based on facial geometric features and hand movement features[J]. Journal of Mechanical Engineering, 2019, 55(2): 32-40.(in Chinese) [13] 王彦秋, 冯英伟.一种基于卷积神经网络的人脸识别改进算法[J]. 半导体光电, 2020, 41(4): 58-586. WANG Y Q, FENG Y W.An improved face recognition algorithm based on convolutional neural network[J]. Semiconductor Optoelectronics, 2020, 41(4): 58-586.(in Chinese) [14] PARK S, PAN F, KANG S, et al. Driver drowsiness detection system based on feature representation learning using various deep networks[C]//Proceedings of ACCV'16.Berlin, Germany:Springer, 2016:154-164. [15] ALEX K, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural networks[C]//Proceedings of NIPS'12.Berlin, Germany:Springer, 2012:1-5. [16] PARKHI O M, VEDALDI A, ZISSERMAN A, et al. Deep face recognition[C]//Proceedings of BMVC'15.Swansea, UK:[s.n.], 2015:1-5. [17] DONAHUE J, HENDRICKS L A, ROHRBACH M, et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 677-691. [18] 郑伟成, 李学伟, 刘宏哲, 代松银.基于深度学习的疲劳驾驶检测算法[J]. 计算机工程, 2020, 46(7): 21-29. ZHENG W C, LI X W, LIU H Z, et al. Fatigue driving detection algorithm based on deep learning[J]. Computer Engineering, 2020, 46(7): 21-29.(in Chinese) [19] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. [20] REDDY B, KIM Y H, YUN S, et al. Real-time driver drowsiness detection for embedded system using model compression of deep neural networks[C]//Proceedings of Computer Vision & Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1-5. [21] MIAO X, ZHEN X, LIU X, et al. Direct shape regression networks for end-to-end face alignment[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018. [22] LIAO S, JAIN A K, LI S Z.Partial face recognition:alignment-free approach[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(5): 1193-1205. [23] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Proceedings of ICLR'15.Washington D.C., USA:IEEE Press, 2015:1-14. [24] HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[EB/OL]. (2019-11-27)[2020-05-10]. https://arxiv.org/abs/1911.11907. [25] SHAHID A, WILKINSON K, MARCU S, et al. Karolinska Sleepiness Scale(KSS)[M]//SHAHID A, WILKINSON K, MARCU S, et al. STOP, THAT and One Hundred Other Sleep Scales.Berlin, Germany:Springer, 2011:1-5. [26] SUNG F, YANG Y, ZHANG L, et al. Learning to compare:relation network for few-shot learning[EB/OL]. (2018-03-27)[2020-05-10]. https://arxiv.org/abs/1711.06025. [27] MASSOZ Q, LANGOHR T, FRANCOIS C, et al. The ULg multimodality drowsiness database(called DROZY) and examples of use[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision.Washington D.C., USA:IEEE Press, 2016:1-5. [28] WENG C H, LAI Y H, LAI S H.Driver drowsiness detection via a hierarchical temporal deep belief network[C]//Proceedings of the 13th Asian Conference on Computer Vision.Taipei, China:[s.n.], 2016:1-5. [29] QIN X, TAN X, CHEN S.Tri-Subject kinship verification:understanding the core of a family[J]. IEEE Transactions on Multimedia, 2015, 17(10): 1855-1867. [30] ZJU eyeblink database, bibinfonote[EB/OL]. (2017-09-26)[2020-05-10]. http://www.cs.zju.edu.cn/gpan/database/db_blink.html. [31] WANG X S, XU C.Driver drowsiness detection based on non-intrusive metrics considering individual specifics[J]. Accident Analysis and Prevention, 2016, 95(Part B): 350-357. [32] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. |