[1] 朱鸿展.融合手势与语音的多通道标绘交互技术研究[D].长沙:国防科学技术大学,2014. ZHU H Z.Research on multi-channel plotting interactive technology combining gesture and speech[D].Changsha:National University of Defence Technology,2014.(in Chinese) [2] 曹慧敏.基于海上侦察系统的声音识别技术研究[D].南京:南京理工大学,2010. CAO H M.Research on voice recognition technology based on maritime reconnaissance system[D].Nanjing:Nanjing University of Science and Technology,2010. [3] 赵军辉,匡镜明,谢湘.应用于军事指挥中的鲁棒性语音识别系统[J].兵工学报,2004,25(4):509-512. ZHAO J H,KUANG J M,XIE X.Robust speech recognition system applied in military command[J].Journal of Ordnance Engineering,2004,25(4):509-512.(in Chinese) [4] 路建伟,丁庆海,朱雪平,等.战场环境下的军事命令识别技术[J].南京理工大学学报(自然科学版),2002,26(4):438-441,445. LU J W,DING Q H,ZHU X P,et al.Military command recognition technology in battlefield environment[J].Journal of Nanjing University of Science and Technology(Natural Science Edition),2002,26(4):438-441,445.(in Chinese) [5] 李鹏,杨元维,高贤君,等.基于双向循环神经网络的汉语语音识别[J].应用声学,2020,39(3):464-471. LI P,YANG Y W,GAO X J,et al.Chinese speech recognition based on bidirectional recurrent neural network[J].Applied Acoustics,2020,39(3):464-471.(in Chinese) [6] 张瑞珍,韩跃平,张晓通.基于深度LSTM的端到端的语音识别[J].中北大学学报(自然科学版),2020,41(3):244-248. ZHANG R Z,HAN Y P,ZHANG X T.End-to-end speech recognition based on deep LSTM[J].Journal of North University of China (Natural Science Edition),2020,41(3):244-248.(in Chinese) [7] 刘娟宏,胡彧,黄鹤宇.端到端的深度卷积神经网络语音识别[J].计算机应用与软件,2020,37(4):192-196. LIU J H,HU Y,HUANG H Y.End-to-end deep convolutional neural network speech recognition[J].Computer Applications and Software,2020,37(4):192-196.(in Chinese) [8] 张威,翟明浩,黄子龙,等.SE-MCNN-CTC的中文语音识别声学模型[J].应用声学,2020,39(2):223-230. ZHANG W,ZHAI M H,HUANG Z L,et al.SE-MCNN-CTC Chinese speech recognition acoustic model[J].Applied Acoustics,2020,39(2):223-230.(in Chinese) [9] HAN W,ZHANG Z D,ZHANG Y,et al.ContextNet:improving convolutional neural networks for automatic speech recognition with global context[EB/OL].[2020-05-05].https://arxiv.org/abs/2005.03191. [10] COLLOBERT R,PUHRSCH C,SYNNAEVE G.Wav2Letter:an end-to-end ConvNet-based speech recognition system[EB/OL].[2020-05-05].https://arxiv.org/abs/1609.03193. [11] DAUPHIN L,YANN N.Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2017:325-339. [12] YING T,YANG J,LIU X M.Image super-resolution via deep recursive residual network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:235-244. [13] MARTIN S,SCHLUTER R,NEY H.LSTM neural networks for language modeling[C]//Proceedings of the 20th ACM Conference of the International Speech Communication Association.New York,USA:ACM Press,2012:158-169. [14] MARCELLO F.Language modelling for efficient beam-search[J].Computer Speech and Language 1995,9(4):353-380. [15] MIAO Y J.An empirical exploration of CTC acoustic models[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2016:457-469. [16] KINGMA A,DIEDERIK P,BA J.Adam:a method for stochastic optimization[EB/OL].[2020-05-05].https://arxiv.org/abs/. [17] WANG Y S,DENG X J,PU S B,et al.Residual convolutional CTC networks for automatic speech recognition[EB/OL].[2020-05-05].https://arxiv.org/abs/1702.07793. [18] WILLIAM C.Listen,attend and spell:a neural network for large vocabulary conversational speech recognition[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.Washington D.C.,USA:IEEE Press,2016:59-72. [19] ZHAO J F,XIA M,CHEN L J.Speech emotion recognition using deep 1D & 2D CNN LSTM networks[J].Biomedical Signal Processing and Control,2019,47(6):312-323. [20] PRATAP V,HANNUN A,XU Q T,et al.wav2letter++:the fastest open-source speech recognition system[EB/OL].[2020-05-05].https://arxiv.org/abs/1812.07625. |