[1] BAKER S,KANADE T.Hallucinating faces[C]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition.Washington D.C.,USA:IEEE Press,2002:83-88. [2] CHEN Y,TAI Y,LIU X M,et al.FSRNet:end-to-end learning face super-resolution with facial priors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2492-2501. [3] MA C,JIANG Z Y,RAO Y M,et al.Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:5568-5577. [4] YU X Y,ZHANG L W,XIE W.Semantic-driven face hallucination based on residual network[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2021,3(2):214-228. [5] 袁健,李佳慧.融合先验信息的残差空间注意力人脸超分辨率重建模型[J/OL].小型微型计算机系统:1-8[2022-02-26].https://kns.cnki.net/kcms/detail/21.1106.TP.20220225.1355.010.html.YUAN J,LI J H.Residual spatial attention face super resolution algorithm based on prior information-fusion[J/OL].Journal of Chinese Computer Systems:1-8[2022-02-26].https://kns.cnki.net/kcms/detail/21.1106.TP.20220225.1355.010.html.(in Chinese) [6] LU T,WANG J M,JIANG J J,et al.Global-local fusion network for face super-resolution[J].Neurocomputing,2020,387:309-320. [7] WANG Y,LU T,ZHANG Y,et al.TANet:a new paradigm for global face super-resolution via transformer-CNN aggregation network[EB/OL].[2022-04-20].https://arxiv.org/abs/2109.08174. [8] JIANG K,WANG Z Y,YI P,et al.Dual-path deep fusion network for face image hallucination[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(1):378-391. [9] CHEN C F,GONG D H,WANG H,et al.Learning spatial attention for face super-resolution[J].IEEE Transactions on Image Processing,2021,30(1):1219-1231. [10] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [11] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [12] ZHANG Y L,TIAN Y P,KONG Y,et al.Residual dense network for image super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2472-2481. [13] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:1132-1140. [14] LIU J,TANG J,WU G S.Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of ECCVʼ20.Berlin,Germany:Springer,2020:41-55. [15] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7132-7141. [16] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision.Berlin,Germany:Springer,2018:3-19. [17] ZHANG H,WU C,ZHANG Z,et al.ResNeSt:split-attention networks[EB/OL].[2022-02-26].https://arxiv.org/abs/2004.08955. [18] 王诗言,曾茜,周田,等.基于注意力机制与特征融合的图像超分辨率重建[J].计算机工程,2021, 47(3):269-275,283.WANG S Y,ZENG X,ZHOU T,et al.Image super-resolution reconstruction based on attention mechanism and feature fusion[J].Computer Engineering,2021,47(3):269-275,283.(in Chinese) [19] 陈乔松,蒲柳,张羽,等.结合整体注意力与分形稠密特征的图像超分辨率重建[J].计算机工程,2022,48(11):207-214,223.CHEN Q S,PU L,ZHANG Y,et al.Image super-resolution reconstruction combining holistic attention and fractal density feature[J].Computer Engineering,2022,48(11):207-214,223.(in Chinese) [20] 鲁甜,刘蓉,刘明,等.基于特征图注意力机制的图像超分辨率重建[J].计算机工程,2021,47(3):261-268.LU T,LIU R,LIU M,et al.Image super-resolution reconstruction based on attention mechanism of feature map[J].Computer Engineering,2021,47(3):261-268.(in Chinese) [21] LI J C,FANG F M,MEI K F,et al.Multi-scale residual network for image super-resolution[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:527-542. [22] HE K M,ZHANG X Y,REN S Q,et al.Identity mappings in deep residual networks[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:630-645. [23] NEWELL A,YANG K Y,DENG J.Stacked hourglass networks for human pose estimation[C]//Proceedings of the 15th European Conference on Computer Vision.Berlin,Germany:Springer,2016:483-499. [24] LU T,WANG Y Z,ZHANG Y D,et al.Face hallucination via split-attention in split-attention network[C]//Proceedings of the 29th ACM International Conference on Multimedia.New York,USA:ACM Press,2021:5501-5509. [25] LIU Z W,LUO P,WANG X G,et al.Deep learning face attributes in the wild[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2016:3730-3738. [26] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [27] LE V,BRANDT J,LIN Z,et al.Interactive facial feature localization[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2012:679-692. |