[1] MEHRABIAN A, RUSSELL J A.An approach to environmental psychology[M].Cambridge, USA:MIT Press, 1974. [2] EKMAN P.Strong evidence for universals in facial expressions:a reply to Russell's mistaken critique[J].Frontiers in Cell and Developmental Biology, 1994, 115(2):268-287. [3] OJALA T, PIETIKAINEN M, MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [4] ZHANG Z Y, MU X M, GAO L.Recognizing facial expressions based on Gabor filter selection[C]//Proceedings of the 4th International Congress on Image and Signal Processing.Washington D.C., USA:IEEE Press, 2011:1544-1548. [5] LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 1999:1150-1157. [6] CORTES C, VAPNIK V.Support-vector networks[J].Machine Learning, 1995, 20(3):273-297. [7] LUCEY P, COHN J F, KANADE T, et al.The extended Cohn-Kanade dataset (CK+):a complete dataset for action unit and emotion-specified expression[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops.Washington D.C., USA:IEEE Press, 2010:94-101. [8] LYONS M, AKAMATSU S, KAMACHI M, et al.Coding facial expressions with Gabor wavelets[C]//Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition.Washington D.C., USA:IEEE Press, 1998:200-205. [9] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. [10] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-12-01].http://arXiv:1409.1556. [11] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [12] TANG Y C.Deep learning using linear support vector machines[EB/OL].[2021-12-01].http://arXiv:1306.0239. [13] CHEN Y Z, HU H F.Facial expression recognition by inter-class relational learning[J].IEEE Access, 2019, 7:94106-94117. [14] 兰凌强, 李欣, 刘淇缘, 等.基于联合正则化策略的人脸表情识别方法[J].北京航空航天大学学报, 2020, 46(9):1797-1806. LAN L Q, LI X, LIU Q Y, et al.Facial expression recognition method based on a joint normalization strategy[J].Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9):1797-1806.(in Chinese) [15] LI S, DENG W H, DU J P.Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2584-2593. [16] LI Y, ZENG J B, SHAN S G, et al.Occlusion aware facial expression recognition using CNN with attention mechanism[J].IEEE Transactions on Image Processing, 2019, 28(5):2439-2450. [17] LUO Z M, HU J N, DENG W H.Local subclass constraint for facial expression recognition in the wild[C]//Proceedings of the 24th International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3132-3137. [18] LU Y, WANG S G, ZHAO W T, et al.WGAN-based robust occluded facial expression recognition[J].IEEE Access, 2019, 7:93594-93610. [19] CHEN Y J, LIU S G.Deep partial occlusion facial expression recognition via improved CNN[M]//Advances in Visual Computing.Berlin, Germany:Springer, 2020:451-462. [20] DEVRIES T, TAYLOR G W.Improved regularization of convolutional neural networks with cutout[EB/OL].[2021-12-01].http://arXiv:1708.04552. [21] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [22] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al.Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2021-12-01].https://arxiv.org/abs/1207.0580. [23] DHALL A, GOECKE R, LUCEY S, et al.Static facial expression analysis in tough conditions:data, evaluation protocol and benchmark[C]//Proceedings of IEEE International Conference on Computer Vision Workshops.Washington D.C., USA:IEEE Press, 2011:2106-2112. [24] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [25] 张爱梅, 徐杨.注意力分层双线性池化残差网络的表情识别[J].计算机工程与应用, 2020, 56(23):161-166. ZHANG A M, XU Y.Attention hierarchical bilinear pooling residual network for expression recognition[J].Computer Engineering and Applications, 2020, 56(23):161-166.(in Chinese) [26] 王军, 赵凯, 程勇.基于遮挡感知卷积神经网络的面部表情识别模型[J].计算机工程, 2021, 47(10):242-251. WANG J, ZHAO K, CHENG Y.Facial expression recognition model based on convolutional neural network with occlusion perception[J].Computer Engineering, 2021, 47(10):242-251.(in Chinese) |