[1] MUKHERJEE A, ADARSH S, RAMACHANDRAN K I.ROS-based pedestrian detection and distance estimation algorithm using stereo vision, leddar and CNN[EB/OL].[2021-11-05].https://link.springer.com/chapter/10.1007/978-981-15-5400-1_13. [2] HAO Y T.Research on multi-feature and machine learning hierarchical pedestrian detection method based on deep learning[J].Journal of Physics:Conference Series, 2021, 1748(2):022001. [3] ANSARI M F, LODI K A.A survey of recent trends in two-stage object detection methods[J].Renewable Power for Sustainable Growth, 2021, 723:669-677. [4] ZHANG Y F, LI X, WANG F Y, et al.A comprehensive review of one-stage networks for object detection[C]//Proceedings of IEEE International Conference on Signal Processing, Communications and Computing.Washington D.C., USA:IEEE Press, 2021:1-6. [5] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [6] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [7] SHAO X Q, WEI J Y, GUO D F, et al.Pedestrian detection algorithm based on improved Faster RCNN[C]//Proceedings of IEEE Advanced Information Technology, Electronic and Automation Control Conference.Washington D.C., USA:IEEE Press, 2021:1368-1372. [8] LAI K C, ZHAO J, LIU D J, et al.Research on pedestrian detection using optimized Mask R-CNN algorithm in low-light road environment[J].Journal of Physics:Conference Series, 2021, 1777(1):012057. [9] 音松, 陈雪云, 贝学宇.改进Mask RCNN算法及其在行人实例分割中的应用[J].计算机工程, 2021, 47(6):271-276, 283. YIN S, CHEN X Y, BEI X Y.Improved Mask RCNN algorithm and its application in pedestrian instance segmentation[J].Computer Engineering, 2021, 47(6):271-276, 283.(in Chinese) [10] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-11-05].https://arxiv.org/pdf/2004.10934.pdf. [12] DONG C, LUO X S.Research on a pedestrian detection algorithm based on improved SSD network[J].Journal of Physics:Conference Series, 2021, 1802(3):032073. [13] WEN B Y, WU M Q.Study on pedestrian detection based on an improved YOLOv4 algorithm[C]//Proceedings of IEEE International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2020:1198-1202. [14] CAO Z, YANG H, ZHAO J, et al.Attention fusion for one-stage multispectral pedestrian detection[J].Sensors(Basel, Switzerland), 2021, 21(12):4184. [15] 黄凤琪, 陈明, 冯国富.基于可变形卷积的改进YOLO目标检测算法[J].计算机工程, 2021, 47(10):269-275, 282. HUANG F Q, CHEN M, FENG G F.Improved YOLO object detection algorithm based on deformable convolution[J].Computer Engineering, 2021, 47(10):269-275, 282.(in Chinese) [16] EVERINGHAM M, GOOL L, WILLIAMS C K I, et al.The pascal Visual Object Classes(VOC) challenge[J].International Journal of Computer Vision, 2010, 88(2):303-338. [17] LIN T Y, MAIRE M, BELONGIE S, et al.Microsoft coco:common objects in context[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:740-755. [18] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [19] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [20] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-11-05].https://arxiv.org/abs/1804.02767. [21] TSOTSOS J K.A computational perspective on visual attention[M].Cambridge, USA:MIT Press, 2011. [22] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [23] ROY A G, NAVAB N, WACHINGER C.Concurrent spatial and channel squeeze & excitation in fully convolutional networks[EB/OL].[2021-11-05].https://arxiv.org/pdf/1803.02579v1.pdf. [24] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-11-05].https://arxiv.org/abs/1704.04861. [25] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. |