[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [2] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-04-03].https://arxiv.org/pdf/1409.1556.pdf. [3] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-9. [4] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [5] IANDOLA F N, HAN S, MOSKEWICZ M W, et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2021-04-03].https://arxiv.org/pdf/1602.07360.pdf. [6] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-04-03].https://arxiv.org/pdf/1704.04861.pdf. [7] ZHANG X Y, ZHOU X Y, LIN M X, et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6848-6856. [8] FERRARI V, HEBERT M, SMINCHISESCU C, et al.Unsupervised class-specific deblurring[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Spring, 2018:258-374. [9] 崔婷婷, 唐林波, 衡勇, 等.基于轻量化卷积神经网络的空中红外目标识别[C]//第十二届全国信号和智能信息处理与应用学术会议论文集.北京, 中国:中国学术期刊(光盘版)电子杂志社, 2018:5. CUI T T, TANG L B, HENG Y, et al.Airborne infrared target recognition based on lightweight convolutional neural network[C]//Proceedings of the 12th National Conference on Signal and Intelligent Information Processing and Application.Beijing, China:China Academic Journal (CD version) Electronic Magazine, 2018:5.(in Chinese) [10] 曹昭睿, 白帆, 刘凤丽, 等.基于轻量化神经网络的目标识别跟踪算法研究[J].弹箭与制导学报, 2020, 40(1):19-23. CAO Z R, BAI F, LIU F L, et al.Design of target recognizing and tracking algorithm based on tiny convolution neural network[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1):19-23.(in Chinese) [11] 刘俊, 姜涛, 徐小康, 等.基于轻量化深度网络的舰船目标识别技术研究[J].无线电工程, 2019, 49(12):1025-1030. LIU J, JIANG T, XU X K, et al.Research on ship target recognition technology based on lightweight deep network[J].Radio Engineering, 2019, 49(12):1025-1030.(in Chinese) [12] 付佐毅, 周世杰, 李顶根.轻量级目标识别深度神经网络及其应用[J].计算机工程与应用, 2020, 56(18):131-136. FU Z Y, ZHOU S J, LI D G.Lightweight target recognition deep neural network and its application[J].Computer Engineering and Applications, 2020, 56(18):131-136.(in Chinese) [13] 李亚辉.面向舰船目标识别应用的关键技术研究[D].杭州:杭州电子科技大学, 2019. LI Y H.Research on key technologies for ship target recognition application[D].Hangzhou:Hangzhou Dianzi University, 2019.(in Chinese) [14] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4510-4520. [15] 徐梦婕.轻量化地标感知算法及认知地图中的应用[D].成都:电子科技大学, 2020. XU M J.Lightweight landmark perception algorithm and its application in cognitive MAP[D].Chengdu:University of Electronic Science and Technology of China, 2020.(in Chinese) [16] YANG Y T, YANG R Z, PAN L H, et al.A lightweight deep learning algorithm for inspection of laser welding defects on safety vent of power battery[J].Computers in Industry, 2020, 123:103306. [17] QASAIMEH M, AL-QASSAS R S, MOHAMMAD F, et al.A novel simplified AES algorithm for lightweight real-time applications:testing and discussion[J].Recent Advances in Computer Science and Communications, 2020, 13(3):435-445. [18] RAJAKUMAR M P, RAMYA J, MAHESWARI B U.Health monitoring and fault prediction using a lightweight deep convolutional neural network optimized by Levy flight optimization algorithm[J].Neural Computing and Applications, 2021, 33(19):12513-12534. [19] HE K M, ZHANG X Y, REN S Q, et al.Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1026-1034. [20] LI C L, RAVANBAKHSH S, POCZOS B.Annealing Gaussian into ReLU:a new sampling strategy for leaky-ReLU RBM[EB/OL].[2021-04-03].https://arxiv.org/pdf/1611.03879.pdf. [21] RAMACHANDRAN P, ZOPH B, LE Q V.Searching for activation functions[EB/OL].[2021-04-03].https://arxiv.org/pdf/1710.05941.pdf. [22] HOWARD A, SANDLER M, CHEN B, et al.Searching for MobileNetV3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1314-1324. [23] GOODFELLOW I, BENGIO Y, COURVILLE A.Deep learning[M].Cambridge, USA:MIT Press, 2016. [24] GLOROT X, BORDES A, BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.[S.l]:AAAI Press, 2011:315-323. [25] ABADI M, AGARWAL A, BARHAM P, et al.TensorFlow:large-scale machine learning on heterogeneous distributed systems[EB/OL].[2021-04-03].https://arxiv.org/abs/1603.04467. |