作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (5): 242-250. doi: 10.19678/j.issn.1000-3428.0061550

• 图形图像处理 • 上一篇    下一篇

面向轻量级卷积网络的激活函数与压缩模型

徐增敏1,3, 陈凯2, 郭威伟1,4, 赵汝文1, 蒋占四5   

  1. 1. 桂林电子科技大学 数学与计算科学学院, 广西 桂林 541004;
    2. 杭州海康威视数字技术股份有限公司, 杭州 310052;
    3. 桂林安维科技有限公司, 广西 桂林 541010;
    4. 中国通信建设集团设计院有限公司第四分公司, 郑州 450052;
    5. 桂林电子科技大学 机电工程学院, 广西 桂林 541004
  • 收稿日期:2021-05-06 修回日期:2021-07-04 发布日期:2022-05-10
  • 作者简介:徐增敏(1981—),男,副教授、博士,主研方向为人工智能、计算机视觉、人体行为分析;陈凯(通信作者),工程师;郭威伟,学士;赵汝文,讲师、硕士;蒋占四,教授、博士生导师。
  • 基金资助:
    国家自然科学基金“视频侦查中基于深度学习的人体行为识别技术研究”(61862015);广西重点研发计划项目“面向涉密场所的视频人体行为分析系统研发及应用”(AB17195025);广西高校中青年教师科研基础能力提升项目“基于手机指纹识别身份认证系统研究”(2019KY0253)。

Activation Function and Compression Model for Lightweight Convolutional Network

XU Zengmin1,3, CHEN Kai2, GUO Weiwei1,4, ZHAO Ruwen1, JIANG Zhansi5   

  1. 1. School of Mathematics and Computing Science, Guilin University of Electronic and Technology, Guilin, Guangxi 541004, China;
    2. Hangzhou Hikvision Digital Technology Co., Ltd, Hangzhou, 310052, China;
    3. Guilin Anview Technology Co., Ltd., Guilin, Guangxi 541010, China;
    4. The fourth branch of China Communications Construction Group Design Institute Co., Ltd, Zhengzhou, 450052, China;
    5. School of Mechanical and Electrical Engineering, Guilin University of Electronic and Technology, Guilin, Guangxi 541004, China
  • Received:2021-05-06 Revised:2021-07-04 Published:2022-05-10

摘要: 因卷积神经网络参数膨胀,导致模型训练时占用大量的计算资源和存储资源,从而限制其在边缘终端上的应用。依据深度可分离卷积模型MobileNet V1的设计思路,结合自门控函数和ReLU函数的特点,构建一种改进的激活函数和压缩神经网络模型MobileNet-rhs。将ReLU函数和swish函数分别作为分段线性函数,设计激活函数ReLU-h-swish,通过优化卷积单元结构,解决模型训练过程中难以激活部分神经元的问题,以减少特征信息丢失。构建一种剔除卷积核的压缩模型,从模型深处自下而上剔除2n个卷积核,减少逐点卷积的参数量。在CIFAR-10和CIFAR-100数据集上进行实验,结果表明,引入ReLU-h-swish函数构建MobileNet-rhs模型的Top-1分类准确率为80.38%。相比MobileNet-rhs模型,压缩后MobileNet-rhs模型的参数量减少17.9%,其Top-1分类准确率仅降低2.28个百分点。此外,利用Tensorflow将该模型部署在安卓平台上,实现图像分类相册的应用。

关键词: manifold of interest变换, 深度可分离卷积, 逐点卷积, 自门控函数, Kotlin协程

Abstract: The abundance of computing and storage resources required in model training to relieve the parameter expansion of a deep convolution neural network, limiting a network's application on edge terminals.Based on the design idea of the depthwise separable convolution model MobileNet V1, this study proposes an improved activation function and compressed neural network model that combines the characteristics of the self-gating function and the ReLU function.Taking the ReLU function and swish function as piecewise linear functions, the activation function ReLU-h-swish is designed.By optimizing the convolution unit structure to reduce the loss of feature information, it is difficult to activate some neurons during the process of model training.A compression model with convolution kernels removed is constructed.To compress the model, 2n convolution kernels are removed from the depths of the model from bottom to top to reduce the number of parameters of point-to-point convolution.The experimental results on the CIFAR-10 and CIFAR-100 datasets show that the Top-1 classification accuracy of the MobileNet-rhs model constructed by introducing the ReLU-h-swish function is 80.38%.Compared to the MobileNet-rhs model, the parameters of the compressed MobileNet-rhs model are reduced by 17.9%, and the Top-1 classification accuracy is reduced by only 2.28 percentage points.In addition, Tensorflow is used to deploy the model on the Android platform, which realizes the application of image classification album.

Key words: transformation of manifold of interest, depthwise seperable convolution, pointwise convolution, self-gating function, Kotlin coroutine

中图分类号: