[1] 王陆洋.基于卷积神经网络的图像人群计数研究[D].合肥:中国科学技术大学, 2020. WANG L Y.Image crowd counting based on convolutional neural network[D].Hefei:University of Science and Technology of China, 2020.(in Chinese) [2] ZHANG Y Y, ZHOU D S, CHEN S Q, et al.Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:589-597. [3] ZHANG A R, SHEN J Y, XIAO Z H, et al.Relational attention network for crowd counting[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6787-6796. [4] CHENG Z Q, LI J X, DAI Q, et al.Improving the learning of multi-column convolutional neural network for crowd counting[C]//Proceedings of the 27th ACM International Conference on Multimedia.New York, USA:ACM Press, 2019:1897-1906. [5] GUO D, LI K, ZHA Z J, et al.DADNet:dilated-attention-deformable ConvNet for crowd counting[C]//Proceedings of the 27th ACM International Conference on Multimedia.New York, USA:ACM Press, 2019:1823-1832. [6] LI Y H, ZHANG X F, CHEN D M.CSRNet:dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1091-1100. [7] 马皓, 殷保群, 彭思凡.基于特征金字塔网络的人群计数算法[J].计算机工程, 2019, 45(7):203-207. MA H, YIN B Q, PENG S F.Crowd counting algorithm based on feature pyramid network[J].Computer Engineering, 2019, 45(7):203-207.(in Chinese) [8] LIN T Y, DOLLAR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [9] CAO X K, WANG Z P, ZHAO Y Y, et al.Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:734-750. [10] LIU N, LONG Y C, ZOU C Q, et al.ADCrowdNet:an attention-injective deformable convolutional network for crowd understanding[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3220-3229. [11] SHI Z L, METTES P, SNOEK C.Counting with focus for free[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:4199-4208. [12] TIAN Y K, LEI Y M, ZHANG J P, et al.PaDNet:pan-density crowd counting[J].IEEE Transactions on Image Processing, 2020, 29(5):2714-2727. [13] SAM D B, SAJJAN N N, MAURYA H, et al.Almost unsupervised learning for dense crowd counting[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2019:8868-8875. [14] BAI S, HE Z Q, QIAO Y, et al.Adaptive dilated network with self-correction supervision for counting[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4593-4602. [15] IDREES H, TAYYAB M, ATHREY K, et al.Composition loss for counting, density map estimation and localization in dense crowds[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:532-546. [16] SINDAGI V, YASARL R, PATEL V M.JHU-CROWD++:large-scale crowd counting dataset and a benchmark method[EB/OL].[2021-03-20].https://arxiv.org/abs/2004.03597. [17] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-03-20].http://arxiv.org/abs/1409.1556.pdf. [18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-03-20].https://arxiv.org/pdf/2004.10934.pdf. [19] WU Y, CHEN Y P, YUAN L, et al.Rethinking classification and localization for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:10186-10195. [20] DAI F, LIU H, MA Y K, et al.Dense scale network for crowd counting[EB/OL].[2021-03-20].https://arxiv.org/pdf/1906.09707.pdf. [21] JIANG X L, XIAO Z H, ZHANG B C, et al.Crowd counting and density estimation by trellis encoder-decoder networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:6126-6135. [22] LIU W Z, SALZMANN M, FUA P.Context-aware crowd counting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5094-5103. [23] XIONG H P, LU H, LIU C X, et al.From open set to closed set:counting objects by spatial divide-and-conquer[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8361-8370. [24] WANG Q, GAO J Y, LIN W, et al.Learning from synthetic data for crowd counting in the wild[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:8190-8199. [25] LIU L B, QIU Z L, LI G B, et al.Crowd counting with deep structured scale integration network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1774-1783. [26] SINDAGI V A, PATEL V M.Multi-level bottom-top and top-bottom feature fusion for crowd counting[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1002-1012. |