[1] DONG C, LOY C C, HE K M, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [2] ZHANG Y L, TIAN Y P, KONG Y, et al.Residual dense network for image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7):2480-2495. [3] MEI S H, JIANG R T, LI X, et al.Spatial and spectral joint super-resolution using convolutional neural network[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4590-4603. [4] TANG Y L, GONG W G, CHEN X, et al.Deep inception-residual Laplacian pyramid networks for accurate single-image super-resolution[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5):1514-1528. [5] YANG W M, WANG W, ZHANG X C, et al.Lightweight feature fusion network for single image super-resolution[J].IEEE Signal Processing Letters, 2019, 26(4):538-542. [6] HUI Z, WANG X M, GAO X B.Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:723-731. [7] LIU J, TANG J, WU G S.Residual feature distillation network for lightweight image super-resolution[EB/OL].[2021-05-07].https://arxiv.org/abs/2009.11551. [8] KIM J, LEE J K, LEE K M.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1637-1645. [9] TAI Y, YANG J, LIU X M.Image super-resolution via deep recursive residual network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2790-2798. [10] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-05-07].https://arxiv.org/pdf/1704.04861.pdf. [11] 程德强, 郭昕, 陈亮亮, 等.多通道递归残差网络的图像超分辨率重建[J].中国图象图形学报, 2021, 26(3):605-618. CHENG D Q, GUO X, CHEN L L, et al.Image super-resolution reconstruction from multi-channel recursive residual network[J].Journal of Image and Graphics, 2021, 26(3):605-618.(in Chinese) [12] 刘超, 张晓晖, 胡清平.图像超分辨率卷积神经网络加速算法[J].国防科技大学学报, 2019, 41(2):91-97. LIU C, ZHANG X H, HU Q P.Image super resolution convolution neural network acceleration algorithm[J].Journal of National University of Defense Technology, 2019, 41(2):91-97.(in Chinese) [13] HH J, SHEN L, SUN G.Squeeze-and-Excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [14] 王诗言, 曾茜, 周田, 等.基于注意力机制与特征融合的图像超分辨率重建[J].计算机工程, 2021, 47(3):269-275, 283. WANG S Y, ZENG X, ZHOU T, et al.Image super-resolution reconstruction based on attention mechanism and feature fusion[J].Computer Engineering, 2021, 47(3):269-275, 283.(in Chinese) [15] LAI W S, HUANG J B, AHUJA N, et al.Fast and accurate image super-resolution with deep Laplacian pyramid networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11):2599-2613. [16] YANG X, MEI H Y, ZHANG J Q, et al.DRFN:deep recurrent fusion network for single-image super-resolution with large factors[J].IEEE Transactions on Multimedia, 2019, 21(2):328-337. [17] YANG W M, ZHANG X C, TIAN Y P, et al.Deep learning for single image super-resolution:a brief review[J].IEEE Transactions on Multimedia, 2019, 21(12):3106-3121. [18] 鲁甜, 刘蓉, 刘明, 等.基于特征图注意力机制的图像超分辨率重建[J].计算机工程, 2021, 47(3):261-268. LU T, LIU R, LIU M, et al.Image super-resolution reconstruction based on attention mechanism of feature map[J].Computer Engineering, 2021, 47(3):261-268.(in Chinese) [19] MATSUI Y, ITO K, ARAMAKI Y, et al.Sketch-based manga retrieval using manga109 dataset[J].Multimedia Tools and Applications, 2017, 76(20):21811-21838. [20] KIM J, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1646-1654. [21] TAI Y, YANG J, LIU X M, et al.MemNet:a persistent memory network for image restoration[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:4549-4557. [22] SUN L, LIU Z B, SUN X Y, et al.Lightweight image super-resolution via weighted multi-scale residual network[J].IEEE/CAA Journal of Automatica Sinica, 2021, 8(7):1271-1280. [23] ZHAO X L, ZHANG Y L, ZHANG T, et al.Channel splitting network for single MR image super-resolution[J].IEEE Transactions on Image Processing, 2019, 28(11):5649-5662. |