[1] SALAKHUTDINOV R, MNIH A.Probabilistic matrix factorization[C]//Proceedings of International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc., 2007:1257-1264. [2] AHARON M, ELAD M, BRUCKSTEIN A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [3] KOREN Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2008:426-434. [4] JAMALI M, ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the 4th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2010:135-142. [5] GUO G B, ZHANG J, YORKE-SMITH N.TrustSVD:collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2015:123-129. [6] 孟祥福, 张霄雁, 唐延欢, 等.基于地理-社会关系的多样性与个性化兴趣点推荐[J].计算机学报, 2019, 42(11):2574-2590. MENG X F, ZHANG X Y, TANG Y H, et al.A diversified and personalized recommendation approach based on geo-social relationships[J].Chinese Journal of Computers, 2019, 42(11):2574-2590.(in Chinese) [7] 王刚, 蒋军, 王含茹, 等.基于联合概率矩阵分解的群推荐方法研究[J].计算机学报, 2019, 42(1):98-110. WANG G, JIANG J, WANG H R, et al.Study of group recommendation based on probabilistic matrix factorization[J].Chinese Journal of Computers, 2019, 42(1):98-110.(in Chinese) [8] 刘峰, 王宝亮, 邹荣宇, 等.基于随机游走的网络表示学习推荐算法[J].计算机工程, 2021, 47(9):90-96, 105. LIU F, WANG B L, ZOU R Y, et al.Recommendation algorithm using network representation learning based on random walk[J].Computer Engineering, 2021, 47(9):90-96, 105.(in Chinese) [9] YADAV A, CHAKRAVERTY S, SIBAL R.A survey of implicit trust on social networks[C]//Proceedings of International Conference on Green Computing and Internet of Things(ICGCIoT).Washington D.C., USA:IEEE Press, 2016:1511-1515. [10] OARD D, KIM J.Implicit feedback for recommender systems[C]//Proceedings of AAAI Workshop on Recommender Systems.Palo Alto, USA:AAAI Press, 1998:81-83. [11] ZHANG C X, YU L, WANG Y, et al.Collaborative user network embedding for social recommender systems[C]//Proceedings of 2017 SIAM International Conference on Data Mining.Philadelphia, USA:Society for Industrial and Applied Mathematics, 2017:381-389. [12] LING Z H, XIAO Y Y, WANG H Y, et al.Extracting implicit friends from heterogeneous information network for social recommendation[M].Berlin, Germany:Springer, 2019. [13] AHMADIAN S, JOORABLOO N, JALILI M, et al.A social recommender system based on reliable implicit relationships[J].Knowledge-Based Systems, 2020, 192:105371. [14] 马帅, 刘建伟, 左信.图神经网络综述[J].计算机研究与发展, 2022, 59(1):47-80. MA S, LIU J W, ZUO X.Survey on graph neural network[J].Journal of Computer Research and Development, 2022, 59(1):47-80.(in Chinese) [15] 刘志鑫, 张泽华, 张杰.基于多层次多视角的图注意力Top-N推荐方法[J].计算机科学, 2021, 48(4):104-110. LIU Z X, ZHANG Z H, ZHANG J.Top-N recommendation method for graph attention based on multi-level and multi-view[J].Computer Science, 2021, 48(4):104-110.(in Chinese) [16] 何昊晨, 张丹红.基于多维社交关系嵌入的深层图神经网络推荐方法[J].计算机应用, 2020, 40(10):2795-2803. HE H C, ZHANG D H.Recommendation method based on multidimensional social relationship embedded deep graph neural network[J].Journal of Computer Applications, 2020, 40(10):2795-2803.(in Chinese) [17] WANG X, HE X N, WANG M, et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2019:165-174. [18] FAN W Q, MA Y, LI Q, et al.Graph neural networks for social recommendation[C]//Proceedings of 2019 World Wide Web Conference.New York, USA:ACM Press, 2019:417-426. [19] WU L, SUN P J, FU Y J, et al.A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2019:235-244. [20] 张浩博, 薛峰, 刘凯.基于半自动编码器的协同过滤推荐算法[J].计算机工程, 2021, 47(3):125-130. ZHANG H B, XUE F, LIU K.Collaborative filtering recommendation algorithm based on semi-autoencoder[J].Computer Engineering, 2021, 47(3):125-130.(in Chinese) [21] 李琳, 唐守廉.基于多层注意力表示的音乐推荐模型[J].电子学报, 2020, 48(9):1672-1679. LI L, TANG S L.Hierarchical attention representation model for music recommendation[J].Acta Electronica Sinica, 2020, 48(9):1672-1679.(in Chinese) [22] WU Q T, ZHANG H R, GAO X F, et al.Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems[C]//Proceedings of 2019 World Wide Web Conference.New York, USA:ACM Press, 2019:2091-2102. [23] WU L, LI J W, SUN P J, et al.DiffNet++:a neural influence and interest diffusion network for social recommendation[EB/OL].[2021-07-11].https://arxiv.org/abs/2002.00844. [24] SHI C, HU B B, ZHAO W X, et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2):357-370. |