作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (8): 152-159. doi: 10.19678/j.issn.1000-3428.0063284

• 网络空间安全 • 上一篇    下一篇

一种物联网环境下的分布式异常流量检测方案

丁庆丰, 李晋国   

  1. 上海电力大学 计算机与科学技术学院, 上海 201306
  • 收稿日期:2021-11-19 修回日期:2022-01-16 发布日期:2022-01-26
  • 作者简介:丁庆丰(1996-),男,硕士研究生,主研方向为信息安全、网络入侵检测;李晋国,副教授、博士。
  • 基金资助:
    国家自然科学基金(U1936213,61702321)。

A Distributed Abnormal Traffic Detection Scheme in Internet of Things Environment

DING Qingfeng, LI Jinguo   

  1. School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 201306, China
  • Received:2021-11-19 Revised:2022-01-16 Published:2022-01-26

摘要: 物联网终端设备数量的急剧增加带来了诸多安全隐患,如何高效地进行异常流量检测成为物联网安全研究中的一项重要任务。现有检测方法存在计算开销大的问题,且不能显式地捕捉流量数据中的关系和结构,难以应对新型网络攻击。考虑网络结构和节点设备之间的复杂通信模式,提出一种基于图神经网络的分布式异常流量检测方案。结合物联网环境对卷积神经网络进行改进,识别节点之间的复杂关系,同时在物联网设备、转发器和雾节点上设计并部署分布式检测单元,通过分布式检测架构实现本地化的异常流量检测,从而降低检测延迟和时间开销。在此基础上,引入注意力模块强化对关键特征的提取,增强模型的可解释性,进一步提高检测精度。在公开数据集CTU-13上的实验结果表明,该方案准确率和AUC值达到99.93%和0.99,只需9.26 s即可完成检测,且带宽消耗仅为845 kb/s。

关键词: 物联网, 异常流量检测, 图神经网络, 注意力机制, 多层感知机, 分布式系统

Abstract: The sharp increase in the number of Internet of Things(IoT) terminal devices has introduced many security risks.The effective detection of abnormal traffic has become an important task in the security research of IoT.Existing detection methods have high computational overhead and cannot explicitly capture the relationship or structure in the traffic data;thus, handling new network attacks is difficult.Considering the network structure and complex communication mode between node devices, a distributed abnormal traffic detection scheme based on Graph Neural Network(GNN) is proposed.Combined with an IoT environment, Convolutional Neural Network(CNN) is improved to identify the complex relationships between nodes.Simultaneously, a distributed detection unit is designed and deployed on the IoT devices, transponders, and fog nodes, and the localized abnormal traffic detection is realized through the distributed detection architecture, thereby reducing the detection delay and time overhead.On this basis, an attention module is introduced to strengthen the extraction of key features, enhance the interpretability of the model, and further improve the detection accuracy.Experiments on the CTU-13 public dataset show that the accuracy and AUC value of this scheme achieve 99.93% and 0.99, respectively.Detection can complete in only 9.26 s, and the bandwidth consumption is only 845 kb/s.

Key words: Internet of Things(IoT), abnormal traffic detection, Graph Neural Network(GNN), attention mechanism, Multi-layer Perceptron(MLP), distributed system

中图分类号: