[1] 吴吉义, 李文娟, 曹健, 等.智能物联网AIoT研究综述[J].电信科学, 2021, 37(8):1-17. WU J Y, LI W J, CAO J, et al.AIoT:a taxonomy, review and future directions[J].Telecommunications Science, 2021, 37(8):1-17.(in Chinese) [2] RAHMAN M A, ASYHARI A T, LEONG L S, et al.Scalable machine learning-based intrusion detection system for IoT-enabled smart cities[J].Sustainable Cities and Society, 2020, 61:1-10. [3] QIU H, DONG T, ZHANG T W, et al.Adversarial attacks against network intrusion detection in IoT systems[J].IEEE Internet of Things Journal, 2021, 8(13):10327-10335. [4] FERRAG M A, MAGLARAS L, AHMIM A, et al.RDTIDS:rules and decision tree-based intrusion detection system for Internet-of-Things networks[J].Future Internet, 2020, 12(3):44. [5] MA Y H, YANG Q, GAO Y J.An Internet of Things intrusion detection method based on CNN-FDC[C]//Proceedings of 2021 International Conference on Intelligent Transportation, Big Data &Smart City.Washington D.C., USA:IEEE Press, 2021:174-177. [6] KAUSHIK S.Enhanced the intrusion detection accuracy rate and performance using deep CNN-LSTM[D].Dublin, Ireland:National College of Ireland, 2021. [7] KOZIK R, PAWLICKI M, CHORAŚM.A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment[J].Pattern Analysis and Applications, 2021, 24(4):1441-1449. [8] ASIF N A, SARKER Y, CHAKRABORTTY R K, et al.Graph neural network:a comprehensive review on non-euclidean space[J].IEEE Access, 2021, 9:60588-60606. [9] YAO Y P, SU L Y, ZHANG C, et al.Marrying graph kernel with deep neural network:a case study for network anomaly detection[C]//Proceedings of International Conference on Computational Science.Berlin, Germany:Springer, 2019:102-115. [10] MAHMUD M R, RAMAMOHANARAO K, BUYYA R.Application management in fog computing environments:a taxonomy, review and future directions[J].ACM Computing Surveys, 2020, 53(4):1-43. [11] HASSAN N, YAU K L A, WU C.Edge computing in 5G:a review[J].IEEE Access, 2019, 7:127276-127289. [12] MANSOURI Y, BABAR M A.A review of edge computing:features and resource virtualization[J].Journal of Parallel and Distributed Computing, 2021, 150:155-183. [13] CHIANG W L, LIU X Q, SI S, et al.Cluster-GCN:an efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2019:257-266. [14] ZHANG C, PAN X, LI H P, et al.A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140:133-144. [15] LI G H, MULLER M, THABET A, et al.DeepGCNs:can GCNs go as deep as CNNs?[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9267-9276. [16] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2021-10-11].https://arxiv.org/abs/1609.02907. [17] FUKUI H, HIRAKAWA T, YAMASHITA T, et al.Attention branch network:learning of attention mechanism for visual explanation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10705-10714. [18] GARCÍA S, GRILL M, STIBOREK J, et al.An empirical comparison of botnet detection methods[J].Computers &Security, 2014, 45:100-123. [19] KOLIAS C, KAMBOURAKIS G, STAVROU A, et al.DDoS in the IoT:Mirai and other botnets[J].Computer, 2017, 50(7):80-84. [20] PENG K, LEUNG V C M, ZHENG L X, et al.Intrusion detection system based on decision tree over big data in fog environment[J].Wireless Communications and Mobile Computing, 2018, 2018:1-10. [21] MUGHAL M O, KIM S.Signal classification and jamming detection in wide-band radios using Naïve Bayes classifier[J].IEEE Communications Letters, 2018, 22(7):1398-1401. [22] REDDY R R, RAMADEVI Y, SUNITHA K V N.Effective discriminant function for intrusion detection using SVM[C]//Proceedings of 2016 International Conference on Advances in Computing, Communications and Informatics.Washington D.C., USA:IEEE Press, 2016:1148-1153. [23] PARK S H, PARK H J, CHOI Y J.RNN-based prediction for network intrusion detection[C]//Proceedings of 2020 International Conference on Artificial Intelligence in Information and Communication.Washington D.C., USA:IEEE Press, 2020:572-574. [24] KIM J, KIM J, KIM H, et al.CNN-based network intrusion detection against denial-of-service attacks[J].Electronics, 2020, 9(6):916. [25] JIANG K Y, WANG W Y, WANG A L, et al.Network intrusion detection combined hybrid sampling with deep hierarchical network[J].IEEE Access, 2020, 8:32464-32476. [26] WANG Z, MARTIN R.Model-free posterior inference on the area under the receiver operating characteristic curve[J].Journal of Statistical Planning and Inference, 2020, 209:174-186. |