[1] 姜名扬.三维点云图形的分类和分割[D].上海:上海交通大学, 2019. JIANG M Y.Classification and segmentation of 3D point clouds[D].Shanghai:Shanghai Jiao Tong University, 2019.(in Chinese) [2] CHEN X Z, MA H M, WAN J, et al.Multi-view 3D object detection network for autonomous driving[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1907-1915. [3] ZHU Y K, MOTTAGHI R, KOLVE E, et al.Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2017:3357-3364. [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [5] 曾碧, 黄文.一种融合多特征聚类集成的室内点云分割方法[J].计算机工程, 2018, 44(3):281-286. ZENG B, HUANG W.An indoor point cloud segmentation method fusing with multi-feature cluster ensemble[J].Computer Engineering, 2018, 44(3):281-286.(in Chinese) [6] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2020-09-02].https://arxiv.org/abs/1406.1078v3. [7] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [8] ARMENI I, SAX S, ZAMIR A R, et al.Joint 2D-3D-semantic data for indoor scene understanding[EB/OL].[2020-09-02].https://arxiv.org/abs/1406.1078v3. [9] SU H, MAJI S, KALOGERAKIS E, et al.Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of IEEE International Conference on Computer Vision.Santiago, Chile:IEEE Press, 2015:945-953. [10] 李浩, 霍雯, 裴春营, 等.融合VGG与FCN的智能出租车订单预测模型[J].计算机工程, 2020, 46(12):276-282. LI HAO, HUO W, PEI C Y, et al.Intelligent taxi order forecasting model fusing VGG with FCN[J].Computer Engineering, 2020, 46(12):276-282.(in Chinese) [11] BOULCH A, GUERRY J, LE S B, et al.SnapNet:3D point cloud semantic labeling with 2D deep segmentation networks[J].Computers and Graphics, 2017, 71:189-198. [12] MATURANA D, SCHERER S.VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2015:922-928. [13] LE T, DUAN Y.PointGrid:a deep network for 3D shape understanding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:9204-9214. [14] KLOKOV R, LEMPITSKY V.Escape from cells:deep KD-networks for the recognition of 3D point cloud models[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:863-872. [15] 顾砾, 季怡, 刘纯平.基于多模态特征融合的三维点云分类方法[J].计算机工程, 2021, 47(2):279-284. GU L, JI Y, LIU C P.A classification model of 3D point cloud based on multimodal feature fusion[J].Computer Engineering, 2021, 47(2):279-284.(in Chinese) [16] 李美佳, 于泽宽, 刘晓, 等.点云算法在医学领域的研究进展[J].中国图象图形学报, 2020, 25(10):2013-2023. LI M J, YU Z K, LIU X, et al.Progress of point cloud algorithm in medical field[J].Journal of Image and Graphics, 2020, 25(10):2013-2023.(in Chinese) [17] 张蕊, 李锦涛.基于深度学习的场景分割算法研究综述[J].计算机研究与发展, 2020, 57(4):859-875. ZHANG R, LI J T.A survey on algorithm research of scene parsing based on deep learning[J].Journal of Computer Research and Development, 2020, 57(4):859-875.(in Chinese) [18] QI C R, SU H, MO K, et al.Pointnet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:652-660. [19] QI C R, YI L, SU H, et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[EB/OL].[2020-09-02].https://www.researchgate.net/publication/317426798_PointNet_Deep_Hierarchical_Feature_Learning_on_Point_Sets_in_a_Metric_Space. [20] LANDRIEU L, OBOZINSKI G.Cut pursuit:fast algorithms to learn piecewise constant functions on general weighted graphs[J].SIAM Journal on Imaging Sciences, 2017, 10(4):1724-1766. [21] LANDRIEU L, SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4558-4567. [22] ACHANTA R, SHAJI A, SMITH K, et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [23] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[EB/OL].[2020-09-02].https://wenku.baidu.com/view/9dad28f2c281e 53a5902ffe9.html. [24] SIMONOVSKY M, KOMODAKIS N.Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3693-3702. [25] DEMANTKÉ J, MALLET C, DAVID N, et al.Dimensionality based scale selection in 3D lidar point clouds[J].ISPRS-International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011, 38(5):97-102. [26] KLAMBAUER G, UNTERTHINER T, MAYR A, et al.Self-normalizing neural networks[EB/OL].[2020-09-02].https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07457319. [27] GRAVES A.Long short-term memory:supervised sequence labelling with recurrent neural networks[J].Springer, 2012, 9(8):1735-1780. [28] ENGELMANN F, KONTOGIANNI T, HERMANS A, et al.Exploring spatial context for 3D semantic segmentation of point clouds[C]//Proceedings of IEEE International Conference on Computer Vision Workshops.Washington D.C., USA:IEEE Press, 2017:716-724. [29] HUANG Q G, WANG W Y, NEUMANN U.Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2626-2635. |