[1] 李冬梅,张扬,李东远,等.实体关系抽取方法研究综述[J].计算机研究与发展,2020,57(7):1424-1448. LI D M,ZHANG Y,LI D Y,et al.Review of entity relation extraction methods[J].Journal of Computer Research and Development,2020,57(7):1424-1448.(in Chinese) [2] 何阳宇,晏雷,易绵竹,等.融合CRF与规则的老挝语军事领域命名实体识别方法[J].计算机工程,2020,46(8):297-304. HE Y Y,YAN L,YI M Z,et al.Named entitiy recognition method for Laotian in military field combining CRF and rules[J].Computer Engineering,2020,46(8):297-304.(in Chinese) [3] 张玥杰,徐智婷,薛向阳.融合多特征的最大熵汉语命名实体识别模型[J].计算机研究与发展,2008,45(6):1004-1010. ZHANG Y J,XU Z T,XUE X Y.Fusion of multiple features for Chinese named entity recognition based on maximum entropy model[J].Journal of Computer Research and Development,2008,45(6):1004-1010.(in Chinese) [4] 李春楠,王雷,孙媛媛,等.基于BERT的盗窃罪法律文书命名实体识别方法[J].中文信息学报,2021,35(8):73-81. LI C N,WANG L,SUN Y Y,et al.BERT based named entity recognition for legal texts on theft cases[J].Journal of Chinese Information Processing,2021,35(8):73-81.(in Chinese) [5] 杨培,杨志豪,罗凌,等.基于注意机制的化学药物命名实体识别[J].计算机研究与发展,2018,55(7):1548-1556. YANG P,YANG Z H,LUO L,et al.An attention-based approach for chemical compound and drug named entity recognition[J].Journal of Computer Research and Development,2018,55(7):1548-1556.(in Chinese) [6] YOU Y S,PARK H R.Syllable-based Korean named entity recognition using convolutional neural network[J].Journal of Advanced Marine Engineering and Technology,2020,44(1):68-74. [7] LUO L,YANG Z H,YANG P,et al.An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J].Bioinformatics,2018,34(8):1381-1388. [8] WANG M,ZHOU T.Chinese power dispatching text entity recognition based on a double-layer BiLSTM and multi-feature fusion[C]//Proceedings of the 2nd International Conference on Power Engineering.[S.l.]:Elsevier,2022:980-987. [9] GUI T,ZOU Y C,ZHANG Q,et al.A lexicon-based graph neural network for Chinese NER[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg,USA:Association for Computational Linguistics,2019:1040-1050. [10] 琚生根,李天宁,孙界平.基于关联记忆网络的中文细粒度命名实体识别[J].软件学报,2021,32(8):2545-2556. JU S G,LI T N,SUN J P.Chinese fine-grained name entity recognition based on associated memory networks[J].Journal of Software,2021,32(8):2545-2556.(in Chinese) [11] 罗凌,杨志豪,宋雅文,等.基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究[J].计算机学报,2020,43(10):1943-1957. LUO L,YANG Z H,SONG Y W,et al.Chinese clinical named entity recognition based on stroke ELMo and multi-task learning[J].Chinese Journal of Computers,2020,43(10):1943-1957.(in Chinese) [12] 成于思,施云涛.融合词典特征的Bi-LSTM-WCRF中文人名识别[J].中文信息学报,2020,34(4):69-76. CHENG Y S,SHI Y T.Bi-LSTM-WCRF incorporating dictionary feature for Chinese person Name recognition[J].Journal of Chinese Information Processing,2020,34(4):69-76.(in Chinese) [13] WU G H,TANG G G,WANG Z R,et al.An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition[J].IEEE Access,2019,7:113942-113949. [14] DANG T H,LE H Q,NGUYEN T M,et al.D3NER:biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information[J].Bioinformatics,2018,34(20):3539-3546. [15] JIN Y L,XIE J F,GUO W S,et al.LSTM-CRF neural network with gated self attention for Chinese NER[J].IEEE Access,2019,7:136694-136703. [16] 张晗,郭渊博,李涛.结合GAN与BiLSTM-Attention-CRF的领域命名实体识别[J].计算机研究与发展,2019,56(9):1851-1858. ZHANG H,GUO Y B,LI T.Domain named entity recognition combining GAN and BiLSTM-attention-CRF[J].Journal of Computer Research and Development,2019,56(9):1851-1858.(in Chinese) [17] ZHANG N X,LI F,XU G L,et al.Chinese NER using dynamic meta-embeddings[J].IEEE Access,2019,7:64450-64459. [18] LI X Y,ZHANG H,ZHOUX X.Chinese clinical named entity recognition with variant neural structures based on BERT methods[J].Journal of Biomedical Informatics,2020,107:103422. [19] 胡滨,耿天玉,邓赓,等.基于知识蒸馏的高效生物医学命名实体识别模型[J].清华大学学报(自然科学版),2021,61(9):936-942. HU B,GENG T Y,DENG G,et al.Faster biomedical named entity recognition based on knowledge distillation[J].Journal of Tsinghua University(Science and Technology),2021,61(9):936-942.(in Chinese) [20] HAGSTROM L,JOHANSSON R.Knowledge distillation for Swedish NER models:a search for performance and efficiency[C]//Proceedings of the 23rd Nordic Conference on Computational Linguistics.Washington D.C.,USA:IEEE Press,2021:124-134. [21] HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[EB/OL].[2022-03-01].https://arxiv.org/abs/1503.02531. [22] LIU W,XU T G,XU Q H,et al.An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg,USA:Association for Computational Linguistics,2019:2379-2389. [23] ZHOU X,ZHANG X,TAO C Y,et al.Multi-grained knowledge distillation for named entity recognition[C]//Proceedings of 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg,USA:Association for Computational Linguistics,2021:5704-5716. [24] LIANG S N,GONG M,PEI J,et al.Reinforced iterative knowledge distillation for cross-lingual named entity recognition[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2021:3231-3239. |