[1] 音松, 陈雪云, 贝学宇.改进Mask RCNN算法及其在行人实例分割中的应用[J].计算机工程, 2021, 47(6):271-276, 283. YIN S, CHEN X Y, BEI X Y.Improved mask RCNN algorithm and its application in pedestrian instance segmentation[J].Computer Engineering, 2021, 47(6):271-276, 283.(in Chinese) [2] KHAN M Z, GAJENDRAN M K, LEE Y, et al.Deep neural architectures for medical image semantic segmentation:review[J].IEEE Access, 9:83002-83024. [3] 张艳, 杜会娟, 孙叶美, 等.基于改进SSD算法的遥感图像目标检测[J].计算机工程, 2021, 47(9):252-258, 265. ZHANG Y, DU H J, SUN Y M, et al.Object detection in remote sensing images based on improved SSD algorithm[J].Computer Engineering, 2021, 47(9):252-258, 265.(in Chinese) [4] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:3431-3440. [5] PASZKE A, CHAURASIA A, KIM S, et al.Enet:a deep neural network architecture for real-time semantic segmentation[EB/OL].[2021-10-10].https://arxiv.org/abs/1606.02147. [6] RONNEBERGER O, FISCHER P, BROX T.U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of Conference on Medical Image Computing and Computer-Assisted Intervention.Washington D.C., USA:IEEE Press, 2015:234-241. [7] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:833-851. [8] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [9] ZHAO H S, SHI J P, QI X J, et al.Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6230-6239. [10] WANG X L, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7794-7803. [11] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [12] ZHU X Z, CHENG D Z, ZHANG Z, et al.An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6687-6696. [13] FU J, LIU J, TIAN H J, et al.Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3141-3149. [14] ZHAO T, WU X Q.Pyramid feature attention network for saliency detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3080-3089. [15] BAE W, YOO J, YE J C.Beyond deep residual learning for image restoration:persistent homology-guided manifold simplification[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1141-1149. [16] GUO T T, MOUSAVI H S, VU T H, et al.Deep wavelet prediction for image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1100-1109. [17] LI Q F, SHEN L L, GUO S, et al.Wavelet integrated CNNs for noise-robust image classification[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:7243-7252. [18] RAMAMONJISOA M, FIRMAN M, WATSON J, et al.Single image depth prediction with wavelet decomposition[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:11084-11093. [19] MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[EB/OL].[2021-10-10].https://www.degruyter.com/document/doi/10.1515/9781400827268.494/html. [20] QIN Z Q, ZHANG P Y, WU F, et al.FcaNet:frequency channel attention networks[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:763-772. [21] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-10-10].https://arxiv.org/abs/1704.04861. [22] BROSTOW G J, SHOTTON J, FAUQUEUR J, et al.Segmentation and recognition using structure from motion point clouds[C]//Proceedings of Lecture Notes in Computer Science.Berlin, Germany:Springer, 2008:44-57. [23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [24] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [25] ZHAO H S, SHI J P, QI X J, et al.Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6230-6239. [26] YANG M K, YU K, ZHANG C, et al.DenseASPP for semantic segmentation in street scenes[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3684-3692. [27] 曹炬, 陈钢, 李艳姣.多策略粒子群优化算法[J].计算机工程与科学, 2014, 36(9):1716-1721. CAO J, CHEN G, LI Y J.Multi-strategy particle swarm optimization algorithm[J].Computer Engineering and Science, 2014, 36(9):1716-1721.(in Chinese) [28] LIN G S, MILAN A, SHEN C H, et al.RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5168-5177. [29] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:801-818. |