[1] SUCHANEK F M, KASNECI G, WEIKUM G.YAGO:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web.Washington D.C., USA:IEEE Press, 2007:697-706. [2] BOLLACKER K, EVANS C, PARITOSH P, et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2008:1247-1250. [3] LEHMANN J, ISELE R, JAKOB M, et al.DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia[J].Semantic Web, 2015, 6(2):167-195. [4] ZHANG F, YUAN N J, LIAN D, et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:353-362. [5] HAO Y, ZHANG Y, LIU K, et al.An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th IEEE Annual Meeting of the Association for Computational Linguistics.Washington D.C., USA:IEEE Press, 2017:221-231. [6] XIONG C, POWER R, CALLAN J.Explicit semantic ranking for academic search via knowledge graph embedding[C]//Proceedings of the 26th IEEE International Conference on World Wide Web.Washington D.C., USA:IEEE Press, 2017:1271-1279. [7] YANG B, MITCHELL T.Leveraging knowledge bases in lstms for improving machine reading[EB/OL].[2020-10-20].https://arxiv.org/pdf/1902.09091.pdf. [8] 王维美, 史一民, 李冠宇.改进的胶囊网络知识图谱补全方法[J].计算机工程, 2020, 46(8):21-26. WANG W M, SHI Y M, LI G Y.Improved knowledge graph completion method for capsule network[J].Computer Engineering, 2020, 46(8):21-26.(in Chinese) [9] 李智星, 任诗雅, 王化明, 等.基于非结构化文本增强关联规则的知识推理方法[J].计算机科学, 2019, 46(11):209-215. LI Z X, REN S Y, WANG H M, et al.Knowledge reasoning method based on unstructured text-enhanced association rules[J].Computer Science, 2019, 46(11):209-215.(in Chinese) [10] SOCHER R, CHEN D, MANNING C D, et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of NIPSʼ13.Cambridge, USA:MIT Press, 2013:926-934. [11] WEST R, GABRILOVICH E, MURPHY K, et al.Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International Conference on World Wide Web.New York, USA:ACM Press, 2014:515-526. [12] BORDES A, USUNIER N, GARCIA-DURAN A, et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of NIPSʼ13.Cambridge, USA:MIT Press, 2013:2787-2795. [13] WANG Z, ZHANG J, FENG J, et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Menlo Park, USA:AAAI Press, 2014:1112-1119. [14] LIN Y, LIU Z, SUN M, et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of AAAIʼ14.Menlo Park, USA:AAAI Press, 2014:1254-1267. [15] WANG Q, MAO Z, WANG B, et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12):2724-2743. [16] 刘知远, 孙茂松, 林衍凯, 等.知识表示学习研究进展[J].计算机研究与发展, 2016, 53(2):247-261. LIU Z Y, SUN M S, LIN Y K, et al.Knowledge representation learning:a review[J].Computer Research and Development, 2016, 53(2):247-261.(in Chinese) [17] YANG B, YIH W, HE X, et al.Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2020-10-20].https://arxiv.org/pdf/1412.6575.pdf. [18] TROUILLON T, WELBL J, RIEDEL S, et al.Complex embeddings for simple link prediction[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2016:2071-2080. [19] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al.A novel embeddings model for knowledge base completion based on convolutional neural network[C]//Proceedings of NAACLʼ18.New Orleans, USA:Association for Computational Linguistics, 2018:327-333. [20] NGUYEN D Q, VU T, NGUYEN T D, et al.A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of NAACLʼ19.New Orleans, USA:Association for Computational Linguistics, 2019:2180-2189. [21] SABOUR S, FROSST N, HINTON G E.Dynamic routing between capsules[C]//Proceedings of NIPSʼ17.Cambridge, USA:MIT Press, 2017:3856-3866. [22] HINTON G E, SABOUR S, FROSST N.Matrix capsules with EM routing[C]//Proceedings of IEEE International Conference on Learning Representations.Washington D.C., USA:IEEE Press, 2018:235-246. [23] PARCOLLET T, MORCHID M, LINARES G.Quaternion denoising encoder-decoder for theme identification of telephone conversations[C]//Proceedings of IEEE ISCAʼ17.Washington D.C., USA:IEEE Press, 2017:3325-3328. [24] GAUDET C, MAIDI A.Deep quaternion networks[C]//Proceedings of 2018 IEEE International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2017:328-339. [25] PARCOLLET T, RAVANELLI M, MORCHID M, et al.Quaternion recurrent neural networks[EB/OL].[2020-10-20].https://arxiv.org/pdf/1806.04418.pdf. [26] 林海伦, 王元卓, 贾岩涛, 等.面向网络大数据的知识融合方法综述[J].计算机学报, 2017, 40(1):3-29. LIN H L, WANG Y Z, JIA Y T, et al.Network big data oriented knowledge fusion methods:a survey[J].Chinese Journal of Computers, 2017, 40(1):3-29.(in Chinese) [27] 官赛萍, 靳小龙, 贾岩涛, 等.面向知识图谱的知识推理研究进展[J].软件学报, 2018, 29(10):2966-2994. GUAN S P, JIN X L, JIA Y T, et al.Knowledge reasoning over knowledge graph:a survey[J].Journal of Software, 2018, 29(10):2966-2994.(in Chinese) [28] XIE R B, LIU Z Y, JIA J, et al.Representation learning of knowledge graph with entity descriptions[C]//Proceedings of AAAIʼ16.Cambridge, USA:MIT Press, 2016:2659-2665. [29] DETTMERS T, MINERVINI P, STENETORP P, et al.Convolutional 2D knowledge graph embeddings[C]//Proceedings of AAAIʼ18.Cambridge, USA:MIT Press, 2018:1811-1818. [30] CHEN H, WANG W, LI G, et al.A quaternion-embedded capsule network model for knowledge graph completion[J].IEEE Access, 2020, 8:100890-100904. [31] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2020-10-20].https://arxiv.org/pdf/1412.6980.pdf. [32] TOUTANOVA K, CHEN D.Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality.Washington D.C., USA:IEEE Press, 2015:57-66. [33] SUN Z, DENG Z H, NIE J Y, et al.Rotate:knowledge graph embedding by relational rotation in complex space[EB/OL].[2020-10-20].https://arxiv.org/pdf/1902.10197.pdf. [34] NGUYEN D Q, NGUYEN D Q, NGUYEN T D, et al.A convolutional neural network-based model for knowledge base completion and its application to search personalization[J].Semantic Web, 2019, 10(5):947-960. [35] JI G, HE S, XU L, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2015:687-696. |