作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (2): 40-46,64. doi: 10.19678/j.issn.1000-3428.0060139

• 热点与综述 • 上一篇    下一篇

基于四元数胶囊网络的知识图谱补全模型

陈恒1,2, 王思懿1, 李冠宇2, 祁瑞华1, 杨晨1, 王维美2   

  1. 1. 大连外国语大学 语言智能研究中心, 辽宁 大连 116044;
    2. 大连海事大学 信息科学技术学院, 辽宁 大连 116026
  • 收稿日期:2020-11-30 修回日期:2021-02-24 发布日期:2021-03-12
  • 作者简介:陈恒(1982-),男,副教授、博士研究生,主研方向为智能信息处理;王思懿,硕士研究生;李冠宇、祁瑞华,教授、博士;杨晨,副教授、博士研究生;王维美,硕士研究生。
  • 基金资助:
    国家自然科学基金(61976032,61806038);辽宁省高等学校创新人才项目(WR2019005);辽宁省自然科学基金(2019-ZD-0513);辽宁省教育厅科学研究经费项目(2020JYT03);辽宁省高等学校基本科研项目(2017JYT09);2020年辽宁省教育科学“十三五”规划项目(JG20DB120)。

Knowledge Graph Completion Model Based on Quaternion Capsule Network

CHEN Heng1,2, WANG Siyi1, LI Guanyu2, QI Ruihua1, YANG Chen1, WANG Weimei2   

  1. 1. Research Center for Language Intelligence, Dalian University of Foreign Languages, Dalian, Liaoning 116044, China;
    2. Faculty of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning 116026, China
  • Received:2020-11-30 Revised:2021-02-24 Published:2021-03-12

摘要: 知识图谱采用RDF三元组的形式描述现实世界中的关系和头、尾实体,即(头实体,关系,尾实体)或(主语,谓语,宾语)。为补全知识图谱中缺失的事实三元组,将四元数融入胶囊神经网络模型预测缺失的知识,并构建一种新的知识图谱补全模型。采用超复数嵌入取代传统的实值嵌入来编码三元组结构信息,以尽可能全面捕获三元组全局特性,将实体、关系的四元数嵌入作为胶囊网络的输入,四元数结合优化的胶囊网络模型可以有效补全知识图谱中丢失的三元组,提高预测精度。链接预测实验结果表明,与CapsE模型相比,在数据集WN18RR中,该知识图谱补全模型的Hit@10与正确实体的倒数平均排名分别提高3.2个百分点和5.5%,在数据集FB15K-237中,Hit@10与正确实体的倒数平均排名分别提高2.5个百分点和4.4%,能够有效预测知识图谱中缺失的事实三元组。

关键词: 知识图谱, 四元数, 胶囊网络, 知识图谱补全, 链接预测

Abstract: Knowledge Graph(KG) uses RDF triplets to describe relationships as well as head and tail entities in the real world, namely (head entity, relationship, tail entity) or (subject, predicate, object).In order to complete the missing fact triplets in knowledge graphs, quaternion is integrated into the capsule neural network model to predict missing knowledge, and on this basis a new knowledge graph completion model is proposed.In order to capture the global features of triplets as much as possible, hypercomplex embedding is used to encode triplet structure information instead of traditional real-valued embedding.In this paper, the quaternion embedding of entities and relationships is used as the input of the capsule network.Quaternion combined with the optimized capsule network model can effectively complete the missing triplets in the knowledge map and improve the prediction accuracy.The proposed model is tested in a link prediction experiment and compared with the CapsE model.Results show that on the WN18RR dataset, the proportion of entities correctly completed by the proposed model is 3.2 percentage points higher than CapsE in Hit@10 and 5.5% higher in the reciprocal average ranking.On the FB15K-237 dataset, the proportion of entities correctly completed by the proposed model is 2.5 percentage points higher in Hit@10 and 4.4% higher in the reciprocal average ranking.The model can effectively predict the missing fact triplets in a knowledge graph.

Key words: Knowledge Graph(KG), quaternion, capsule network, knowledge graph completion, link prediction

中图分类号: