1 |
SHI C , LI Y T , ZHANG J W , et al. A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (1): 17- 37.
doi: 10.1109/TKDE.2016.2598561
|
2 |
YANG B, WANG Y T. Representation learning in heterogeneous information networks based on hyper adjacency matrix[C]//Proceedings of International Conference on Database Systems for Advanced Applications. Berlin, Germany: Springer, 2022: 747-755.
|
3 |
CHEN J, MA T F, XIAO C. FastGCN: fast learning with graph convolutional networks via importance sampling[EB/OL]. [2022-10-12]. https://arxiv.org/abs/1801.10247.
|
4 |
DONG Y X, TANG J, WU S, et al. Link prediction and recommendation across heterogeneous social networks[C]//Proceedings of the 12th International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2013: 181-190.
|
5 |
尹赢, 吉立新, 程晓涛, 等. 基于同质子图变换的异质网络表示学习. 计算机工程, 2019, 45 (11): 204- 212.
doi: 10.3778/j.issn.1002-8331.1812-0254
|
|
YIN Y , JI L X , CHENG X T , et al. Heterogeneous network representation learning based on homogeneous subgraghs transformation. Computer Engineering, 2019, 45 (11): 204- 212.
doi: 10.3778/j.issn.1002-8331.1812-0254
|
6 |
郭振宏, 李海峰. 异质信息网络中演员合作关系的链路预测. 计算机工程, 2017, 43 (1): 219- 225.
doi: 10.3969/j.issn.1000-3428.2017.01.038
|
|
GUO Z H , LI H F . Link prediction of actor cooperation relationship in heterogeneous information network. Computer Engineering, 2017, 43 (1): 219- 225.
doi: 10.3969/j.issn.1000-3428.2017.01.038
|
7 |
|
8 |
MONTI F, BRONSTEIN M M, BRESSON X. Geometric matrix completion with recurrent multi-graph neural networks[EB/OL]. [2022-10-12]. https://arxiv.org/abs/1704.06803.
|
9 |
SALAMAT A , LUO X , JAFARI A . HeteroGraphRec: a heterogeneous graph-based neural networks for social recommendations. Knowledge-Based Systems, 2021, 217, 106817.
doi: 10.1016/j.knosys.2021.106817
|
10 |
BHAGAT S, CORMODE G, MUTHUKRISHNAN S. Node classification in social networks[M]//AGGARWAL C. Social network data analytics. Berlin, Germany: Springer, 2011: 115-148.
|
11 |
朱旭东, 熊贇. 基于多层次注意力与图模型的图像多标签分类算法. 计算机工程, 2022, 48 (4): 173-178, 190.
URL
|
|
ZHU X D , XIONG Y . Multi-label image classification algorithm based on multi-scale attention and graph model. Computer Engineering, 2022, 48 (4): 173-178, 190.
URL
|
12 |
范智华, 黄大科, 李涓子, 等. 基于时间序列与多部图的演化聚类动态分析. 计算机工程, 2005, 31 (14): 156- 158.
|
|
FAN Z H , HUANG D K , LI J Z , et al. Morphing cluster dynamics analysis based on time series and multipartite graph. Computer Engineering, 2005, 31 (14): 156- 158.
|
13 |
LI X, WU Y, ESTER M, et al. Semi-supervised clustering in attributed heterogeneous information networks[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 1621-1629.
|
14 |
|
15 |
|
16 |
徐上上, 孙福振, 王绍卿, 等. 基于图神经网络的异构信任推荐算法. 计算机工程, 2022, 48 (9): 89-95, 104.
URL
|
|
XU S S , SUN F Z , WANG S Q , et al. Heterogeneous trust recommendation algorithm based on graph neural networks. Computer Engineering, 2022, 48 (9): 89-95, 104.
URL
|
17 |
YANG C, XIAO Y X, ZHANG Y, et al. Heterogeneous network representation learning: a unified framework with survey and benchmark[EB/OL]. [2022-10-12]. https://arxiv.org/abs/2004.00216.
|
18 |
DONG Y X, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 135-144.
|
19 |
FU T Y, LEE W C, LEI Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 1797-1806.
|
20 |
YANG C , XIAO Y X , ZHANG Y , et al. Heterogeneous network representation learning: a unified framework with survey and benchmark. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (10): 4854- 4873.
doi: 10.1109/TKDE.2020.3045924
|
21 |
WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 28th International Conference on World Wide Web. New York, USA: ACM Press, 2019: 2022-2032.
|
22 |
ZHU Z H, FAN X X, CHU X K, et al. HGCN: a heterogeneous graph convolutional network-based deep learning model toward collective classification[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 1161-1171.
|
23 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
24 |
|
25 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of International Conference on Knowledge Discovery and Data Mining, New York, USA: ACM Press, 2016: 855-864.
|
26 |
TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York, USA: ACM Press, 2015: 1067-1077.
|
27 |
WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 1225-1234.
|
28 |
|
29 |
|
30 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 1025-1035.
|
31 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of European Semantic Web Conference. Berlin, Germany: Springer, 2018: 593-607.
|
32 |
ZHANG C X, SONG D J, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2019: 793-803.
|
33 |
LU Y F, FANG Y, SHI C. Meta-learning on heterogeneous information networks for cold-start recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 1563-1573.
|
34 |
|
35 |
ZHAO J N , WANG X A , SHI C A , et al. Heterogeneous graph structure learning for graph neural networks. Proceedings of AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4697- 4705.
doi: 10.1609/aaai.v35i5.16600
|