1 |
|
2 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
3 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
4 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
5 |
|
6 |
XIONG Z, XU H, LI W, et al. Multi-source adversarial sample attack on autonomous vehicles. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2822- 2835.
doi: 10.1109/TVT.2021.3061065
|
7 |
SHEN M, YU H, ZHU L H, et al. Effective and robust physical-world attacks on deep learning face recognition systems. IEEE Transactions on Information Forensics and Security, 2021, 16, 4063- 4077.
doi: 10.1109/TIFS.2021.3102492
|
8 |
AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 2018, 6, 14410- 14430.
doi: 10.1109/ACCESS.2018.2807385
|
9 |
姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47(1): 1- 11.
URL
|
|
JIANG Y, ZHANG L G. Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47(1): 1- 11.
URL
|
10 |
|
11 |
KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[M]. [S. 1. ]: CRC Press, 2018.
|
12 |
|
13 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of IEEE Symposium on Security and Privacy. Washington D. C., USA: IEEE Press, 2017: 39-57.
|
14 |
XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 2730-2739.
|
15 |
DONG Y P, PANG T Y, SU H, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 4312-4321.
|
16 |
丁佳, 许智武. 基于Rectified Adam和颜色不变性的对抗迁移攻击. 软件学报, 2022, 33(7): 2525- 2537.
|
|
DING J, XU Z W. Transfer-based adversarial attack with Rectified Adam and color invariance. Journal of Software, 2022, 33(7): 2525- 2537.
|
17 |
HANG J, HAN K J, CHEN H, et al. Ensemble adversarial black-box attacks against deep learning systems. Pattern Recognition, 2020, 101, 107184.
doi: 10.1016/j.patcog.2019.107184
|
18 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9185-9193.
|
19 |
NESTEROV Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/k2). Doklady Akademii Nauk SSSR, 1983, 269, 543- 547.
|
20 |
|
21 |
|
22 |
RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211- 252.
doi: 10.1007/s11263-015-0816-y
|
23 |
|
24 |
ROBBINS H, MONRO S. A stochastic approximation method. The Annals of Mathematical Statistics, 1951, 22(3): 400- 407.
doi: 10.1214/aoms/1177729586
|
25 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
26 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. Artificial Intelligence, 2017, 31(1): 4278- 4284.
|
27 |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin: Germany: Springer, 2016: 630-645.
|