1 |
SADAK F, SAADAT M, HAJIYAVAND A M. Real-time deep learning-based image recognition for applications in automated positioning and injection of biological cells. Computers in Biology and Medicine, 2020, 125, 103976.
doi: 10.1016/j.compbiomed.2020.103976
|
2 |
赖妍菱, 石峻峰, 陈继鑫, 等. 基于U-Net的对抗样本防御模型. 计算机工程, 2021, 47(12): 163- 170.
URL
|
|
LAI Y L, SHI J F, CHEN J X, et al. Adversarial example defense model based on U-Net. Computer Engineering, 2021, 47(12): 163- 170.
URL
|
3 |
AKHTAR N, MIAN A, KARDAN N, et al. Advances in adversarial attacks and defenses in computer vision: a survey. IEEE Access, 2021, 9, 155161- 155196.
doi: 10.1109/ACCESS.2021.3127960
|
4 |
姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47(1): 1- 11.
URL
|
|
JIANG Y, ZHANG L G. Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47(1): 1- 11.
URL
|
5 |
陈晓楠, 胡建敏, 张本俊, 等. 基于模型间迁移性的黑盒对抗攻击起点提升方法. 计算机工程, 2021, 47(8): 162- 169.
URL
|
|
CHEN X N, HU J M, ZHANG B J, et al. Black box adversarial attack starting point promotion method based on mobility between models. Computer Engineering, 2021, 47(8): 162- 169.
URL
|
6 |
ZHANG J W, WANG J W. A survey on adversarial example. Journal of Information Hiding and Privacy Protection, 2020, 2(1): 47- 57.
doi: 10.32604/jihpp.2020.010462
|
7 |
丁佳, 许智武. 基于Rectified Adam和颜色不变性的对抗迁移攻击. 软件学报, 2022, 33(7): 2525- 2537.
|
|
DING J, XU Z W. Transfer-based adversarial attack with Rectified Adam and color invariance. Journal of Software, 2022, 33(7): 2525- 2537.
|
8 |
|
9 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9185-9193.
|
10 |
|
11 |
XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2725-2734.
|
12 |
DONG Y P, PANG T Y, SU H, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4307-4316.
|
13 |
LIN J D, SONG C B, HE K, et al. Nesterov accelerated gradient and scale invariance for adversarial attacks[EB/OL]. [2022-08-10]. https://arxiv.org/abs/1908.06281.
|
14 |
GUPTA A K, SEAL A, PRASAD M, et al. Salient object detection techniques in computer vision: a survey. Entropy, 2020, 22(10): 1174.
doi: 10.3390/e22101174
|
15 |
BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One, 2015, 10(7): 0130140.
|
16 |
|
17 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2921-2929.
|
18 |
ZHANG J M, SCLAROFF S, LIN Z, et al. Unconstrained salient object detection via proposal subset optimization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 5733-5742.
|
19 |
FENG M Y, LU H C, DING E R. Attentive feedback network for boundary-aware salient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1623-1632.
|
20 |
ZENG Y, ZHUGE Y Z, LU H C, et al. Multi-source weak supervision for saliency detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6067-6076.
|
21 |
ZHANG Z, MA J H, XU P P, et al. Saliency detection with deformable convolution and feature attention[C]//Proceedings of ECAI'20. Washington D. C., USA: IEEE Press, 2020: 2800-2807.
|
22 |
RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211- 252.
doi: 10.1007/s11263-015-0816-y
|
23 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
24 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2017: 4278-4284.
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Proceedings of ECCV'16. Berlin, Gwemany: Springer, 2016: 630-645.
|
26 |
|
27 |
SETIADI D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools and Applications, 2021, 80(6): 8423- 8444.
|