作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (3): 173-181. doi: 10.19678/j.issn.1000-3428.0066649

• 网络空间安全 • 上一篇    下一篇

基于v3洋葱域名的比特币地址威胁程度分析

胡锦枫1, 徐晓瑀2, 陈云芳1, 张伟1,*()   

  1. 1. 南京邮电大学计算机学院, 江苏 南京 210023
    2. 江苏省联创软件研究院, 江苏 南京 210036
  • 收稿日期:2022-12-29 出版日期:2024-03-15 发布日期:2023-06-26
  • 通讯作者: 张伟
  • 基金资助:
    国家重点研发计划(2019YFB2101700)

Threat Level Analysis of Bitcoin Address Based on v3 Onion Domain Name

Jinfeng HU1, Xiaoyu XU2, Yunfang CHEN1, Wei ZHANG1,*()   

  1. 1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
    2. Jiangsu Lianchuang Software Research Institute, Nanjing 210036, Jiangsu, China
  • Received:2022-12-29 Online:2024-03-15 Published:2023-06-26
  • Contact: Wei ZHANG

摘要:

比特币可以在不透露使用者身份的情况下进行交换,导致其成为不法分子在暗网上进行违法活动的主要方式。为了追踪比特币非法交易,传统方法根据比特币的伪匿名性,在整个区块链上进行启发式地址聚类,没有充分利用比特币地址在暗网上的信息。2021年Tor官方全面启用v3洋葱域名,使得以往的v2洋葱域名数据无法再作为分析的依据。设计并实现基于v3洋葱域名的比特币地址威胁程度的一体化分析框架TLAFDB。信息收集模块使用境外服务器解决地域限制并设置socks5h代理以支持暗网爬虫运行,使用洋葱种子地址在暗网中爬行收集最新的v3洋葱域名数据,信息清洗模块采用可同时覆盖Base58和Bech32编码的正则表达式以提取v3洋葱域名网页中的比特币地址,通过区块链搜索引擎Blockchain.com筛选存在真实交易的比特币地址,并建立其和所在v3洋葱域名的关联关系,信息分析模块采用人工分析和关键词匹配相结合的方法分类v3洋葱域名,赋予其关联的比特币地址类别和流行度并判定威胁程度。实验结果表明,TLAFDB收集了23 627个v3洋葱域名网页,提取并分析1 141个存在真实交易的比特币地址的类别、流行度和威胁程度,发现在暗网中同一个比特币地址常出现在大量的镜像洋葱域名网页上,超过95%的比特币地址被恶意使用,并且庞氏骗局交易量占高危比特币地址总交易量的99%。

关键词: 暗网, 爬虫, v3洋葱域名, 比特币地址, 分类

Abstract:

Bitcoin can be exchanged without revealing the user's identity, making it the main way for criminals to engage in illegal activities on the dark Web. To track illegal Bitcoin transactions, traditional methods use the pseudo anonymity of Bitcoin to perform heuristic address clustering on the entire blockchain, without fully utilizing the information of Bitcoin addresses on the dark Web. In 2021, Tor officially launched the v3 onion domain name, making the previous v2 onion domain name data no longer a basis for analysis. In response to this challenge, an integrated analysis framework called threat-level analysis framework for Bitcoin addresses based on v3 onion domain names TLAFDB is proposed. This framework enables the assessment of the threat level associated with Bitcoin addresses using v3 onion domain names. Information collection module uses overseas servers to solve regional restrictions and sets socks5h agents to support the operation of dark Web crawlers. It crawls through the dark web using onion seed addresses to collect the latest v3 onion domain name data.Information cleaning module uses regular expressions that can simultaneously cover Base58 and Bech32 encoding to extract Bitcoin addresses from the v3 onion domain name webpage, through the blockchain search engine, Blockchain.com, Bitcoin addresses with real transactions are filtered and their association with the v3 onion domain name is established.Information analysis module uses a combination of manual analysis and keyword matching to classify v3 onion domain names, assign their associated Bitcoin address categories and popularity, and determine the degree of threat. The experimental results show that TLAFDB can collect 23 627 v3 onion domain web pages, as well as extract and analyze the categories, popularity, and threat levels of 1 141 Bitcoin addresses with real transactions. In dark web, the same Bitcoin address often appears on numerous mirrored onion domain web pages, with over 95% of Bitcoin addresses being maliciously used, and the Ponzi scheme accounts for 99% of the total transaction volume of high-risk Bitcoin addresses.

Key words: dark Web, crawler, v3 onion domain name, Bitcoin address, classification