[1] LUO W H, XING J L, MILAN A, et al.Multiple object tracking:a literature review[EB/OL].[2021-07-07].https://arxiv.org/abs/1409.7618. [2] BERCLAZ J, FLEURET F, TURETKEN E, et al.Multiple object tracking using K-shortest paths optimization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9):1806-1819. [3] PIRSIAVASH H, RAMANAN D, FOWLKES C C.Globally-optimal greedy algorithms for tracking a variable number of objects[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2011:1201-1208. [4] KALMAN R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering, 1960, 82(1):35-45. [5] HENRIQUES J F, CASEIRO R, MARTINS P, et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596. [6] BEWLEY A, GE Z Y, OTT L, et al.Simple online and realtime tracking[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2016:3464-3468. [7] WOJKE N, BEWLEY A, PAULUS D.Simple online and realtime tracking with a deep association metric[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2017:3645-3649. [8] BAE S H, YOON K J.Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3):595-610. [9] CHEN L, AI H Z, ZHUANG Z J, et al.Real-time multiple people tracking with deeply learned candidate selection and person re-identification[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2018:1-6. [10] BERGMANN P, MEINHARDT T, LEAL-TAIXÉ L.Tracking without bells and whistles[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:941-951. [11] ZHOU X Y, KOLTUN V, KRÄHENBÜHL P.Tracking objects as points[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:474-490. [12] WANG Z D, ZHENG L, LIU Y X, et al.Towards real-time multi-object tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:107-122. [13] ZHANG Y F, WANG C Y, WANG X G, et al.FairMOT:on the fairness of detection and re-identification in multiple object tracking[EB/OL].[2021-07-07]. https://arxiv.org/abs/2004.01888. [14] PENG J L, WANG C G, WAN F B, et al.Chained-tracker:chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:145-161. [15] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [16] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [17] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [18] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [19] DAI J F, QI H Z, XIONG Y W, et al.Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:764-773. [20] ZHU X Z, HU H, LIN S, et al.Deformable ConvNets V2:more deformable, better results[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:9300-9308. [21] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [22] PANG J M, CHEN K, SHI J P, et al.Libra R-CNN:towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:821-830. [23] BERNARDIN K, STIEFELHAGEN R.Evaluating multiple object tracking performance:the CLEAR MOT metrics[J].Journal on Image and Video Processing, 2008, 28:1-11. [24] RISTANI E, SOLERA F, ZOU R, et al.Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of the 2016 European Conference on Computer Vision.Berlin, Germany:Springer, 2016:17-35. [25] SUN S J, AKHTAR N, SONG H S, et al.Deep affinity network for multiple object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1):104-119. [26] PANG B, LI Y Z, ZHANG Y F, et al.TubeTK:adopting tubes to track multi-object in a one-step training model[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6307-6317. [27] WANG Y X, KITANI K, WENG X S.Joint object detection and multi-object tracking with graph neural networks[EB/OL].[2021-07-07].https://arxiv.org/abs/2006.13164. [28] PANG J M, QIU L L, LI X, et al.Quasi-dense similarity learning for multiple object tracking[EB/OL].[2021-07-07].https://arxiv.org/abs/2006.06664. [29] XU Y H, BAN Y T, DELORME G, et al.TransCenter:transformers with dense representations for multiple-object tracking[EB/OL].[2021-07-07].https://arxiv.org/abs/2103.15145. |