1 |
ALAM E, SUFIAN A, DUTTA P, et al. Vision-based human fall detection systems using deep learning: a review. Computers in Biology and Medicine, 2022, 146, 1- 22.
|
2 |
GUTIÉRREZ J, RODRÍGUEZ V, MARTIN S. Comprehensive review of vision-based fall detection systems. Sensors, 2021, 21(3): 1- 50.
doi: 10.1109/JSEN.2020.3045950
|
3 |
PARMAR R, TRAPASIYA S. A comprehensive survey of various approaches on human fall detection for elderly people. Wireless Personal Communications, 2022, 126(2): 1679- 1703.
doi: 10.1007/s11277-022-09816-6
|
4 |
杨志勇, 王俊杰, 金磊. 基于SE-CNN的人体摔倒检测方法. 计算机工程, 2022, 48(6): 270- 277.
doi: 10.19678/j.issn.1000-3428.0061833
|
|
YANG Z Y, WANG J J, JIN L. Human fall detection method based on SE-CNN. Computer Engineering, 2022, 48(6): 270- 277.
doi: 10.19678/j.issn.1000-3428.0061833
|
5 |
张宇, 温光照, 米思娅, 等. 基于深度学习的二维人体姿态估计综述. 软件学报, 2022, 33(11): 4173- 4191.
URL
|
|
ZHANG Y, WEN G Z, MI S Y, et al. Overview on 2D human pose estimation based on deep learning. Journal of Software, 2022, 33(11): 4173- 4191.
URL
|
6 |
马子越, 彭瑞阳, 孙晓晗, 等. 基于OpenPose的人体姿态估计技术研究综述. 软件导刊, 2022, 21(11): 247- 252.
doi: 10.11907/rjdk.212574
|
|
MA Z Y, PENG R Y, SUN X H, et al. Review of human pose estimation technology research based on OpenPose. Software Guide, 2022, 21(11): 247- 252.
doi: 10.11907/rjdk.212574
|
7 |
CHEN W M, JIANG Z J, GUO H L, et al. Fall detection based on key points of human-skeleton using OpenPose. Symmetry, 2020, 12(5): 1- 17.
|
8 |
LIN C B, DONG Z Q, KAI K W, et al. A framework for fall detection based on OpenPose skeleton and LSTM/GRU models. Applied Sciences, 2021, 11(1): 1- 20.
doi: 10.3969/j.issn.0255-8297.2021.01.001
|
9 |
卫少洁, 周永霞. 一种结合AlphaPose和LSTM的人体摔倒检测模型. 小型微型计算机系统, 2019, 40(9): 1886- 1890.
doi: 10.3969/j.issn.1000-1220.2019.09.014
|
|
WEI S J, ZHOU Y X. Human body fall detection model combining AlphaPose and LSTM. Journal of Chinese Computer Systems, 2019, 40(9): 1886- 1890.
doi: 10.3969/j.issn.1000-1220.2019.09.014
|
10 |
马敬奇, 雷欢, 陈敏翼. 基于AlphaPose优化模型的老人跌倒行为检测算法. 计算机应用, 2022, 42(1): 294- 301.
URL
|
|
MA J Q, LEI H, CHEN M Y. Fall behavior detection algorithm for the elderly based on AlphaPose optimization model. Journal of Computer Applications, 2022, 42(1): 294- 301.
URL
|
11 |
RAZA A, YOUSAF M H, VELASTIN S A. Human fall detection using YOLO: a real-time and AI-on-the-edge perspective[C]//Proceedings of the 12th International Conference on Pattern Recognition Systems. Washington D. C., USA: IEEE Press, 2022: 1-6.
|
12 |
YIN Y, LEI L, LIANG M, et al. Research on fall detection algorithm for the elderly living alone based on YOLO[C]//Proceedings of International Conference on Emergency Science and Information Technology. Washington D. C., USA: IEEE Press, 2021: 403-408.
|
13 |
王晓雯, 梁博, 刘芳芳. 基于注意力机制与加权盒函数的YOLOv5的行人摔倒检测算法. 山西大学学报(自然科学版), 2023, 46(2): 334- 341.
URL
|
|
WANG X W, LIANG B, LIU F F. YOLOv5 pedestrian fall detection algorithm based on attention mechanism and weighted box function. Journal of Shanxi University(Natural Science Edition), 2023, 46(2): 334- 341.
URL
|
14 |
ZHAO X. Research on the application of OpenPose in escalator safety systems[C]//Proceedings of the 5th International Conference on Advanced Algorithms and Control Engineering. Sanya, China: [s. n. ], 2022: 1-8.
|
15 |
LIU S F, AN Z L, WANG N, et al. Research on elevator passenger fall detection based on machine vision[C]//Proceedings of the 3rd International Conference on Advances in Civil Engineering, Energy Resources and Environment Engineering. Qingdao, China: [s. n. ], 2021: 1-10.
|
16 |
JIAO Z Y, LEI H, ZONG H S, et al. Potential escalator-related injury identification and prevention based on multi-module integrated system for public health[EB/OL]. [2023-03-12]. https://arxiv.org/abs/2103.07620v1.
|
17 |
滕安. 基于人体姿态识别的行人乘坐自动扶梯跌倒检测方法的研究[D]. 大连: 大连交通大学, 2019.
|
|
TENG A. Research of falling detection method of pedestrians taking the escalator based on human pose recognition[D]. Dalian: Dalian Jiaotong University, 2019. (in Chinese)
|
18 |
张建军. 基于手扶电梯监控视频的危险行为检测及研究[D]. 合肥: 安徽大学, 2021.
|
|
ZHANG J J. Detection and research of dangerous behavior based on video monitoring of elevator[D]. Hefei: Anhui University, 2021. (in Chinese)
|
19 |
汪威, 胡旭晓, 吴跃成, 等. 基于深度学习的自动扶梯视频人体动作识别. 软件工程, 2021, 24(9): 24- 27.
URL
|
|
WANG W, HU X X, WU Y C, et al. Human motion recognition in escalator video based on deep learning. Software Engineering, 2021, 24(9): 24- 27.
URL
|
20 |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述. 电子与信息学报, 2022, 44(10): 3697- 3708.
URL
|
|
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning. Journal of Electronics & Information Technology, 2022, 44(10): 3697- 3708.
URL
|
21 |
|
22 |
|
23 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 17-24.
|
24 |
|
25 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
26 |
XU Y F, WEI H P, LIN M X, et al. Transformers in computational visual media: a survey. Computational Visual Media, 2022, 8, 33- 62.
|
27 |
衡红军, 范昱辰, 王家亮. 基于Transformer的多方面特征编码图像描述生成算法. 计算机工程, 2023, 49(2): 199- 205.
doi: 10.19678/j.issn.1000-3428.0064450
|
|
HENG H J, FAN Y C, WANG J L. Multifaceted feature coding image caption generation algorithm based on Transformer. Computer Engineering, 2023, 49(2): 199- 205.
doi: 10.19678/j.issn.1000-3428.0064450
|
28 |
WOO S H, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
29 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
30 |
MA N N, ZHANG X Y, SUN J. Funnel activation for visual recognition[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 351-368.
|