1 |
李晓辉, 赵加旭, 彭海豹, 等. HMGA2对软脑膜转移黑色素瘤细胞迁移和增殖的影响. 中国癌症杂志, 2024, 34(4): 389- 399.
URL
|
|
LI X H, ZHAO J X, PENG H B, et al. Effects of HMGA2 on migration and proliferation of leptomeningeal metastatic melanoma. China Oncology, 2024, 34(4): 389- 399.
URL
|
2 |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394- 424.
doi: 10.3322/caac.21492
|
3 |
CARR S, SMITH C, WERNBERG J. Epidemiology and risk factors of melanoma. Surgical Clinics of North America, 2020, 100(1): 1- 12.
doi: 10.1016/j.suc.2019.09.005
|
4 |
SCHADENDORF D, VAN AKKOOI A C, BERKING C, et al. Melanoma. The Lancet, 2018, 392, 971- 984.
doi: 10.1016/S0140-6736(18)31559-9
|
5 |
高菲, 辛琳琳. 甲下黑色素瘤的临床和皮肤镜研究进展. 中国医刊, 2022, 57(9): 954- 956.
doi: 10.3969/j.issn.1008-1070.2022.09.009
|
|
GAO F, XIN L L. Clinical and dermoscopic studies of subungual malignant melanoma. Chinese Journal of Medicine, 2022, 57(9): 954- 956.
doi: 10.3969/j.issn.1008-1070.2022.09.009
|
6 |
贵向泉, 张馨月, 李立. 高分辨率皮肤黑色素瘤图像的两阶段式分割算法. 计算机工程, 2023, 49(11): 267- 274.
URL
|
|
GUI X Q, ZHANG X Y, LI L. Two-stage segmentation algorithm of high resolution skin melanoma image. Computer Engineering, 2023, 49(11): 267- 274.
URL
|
7 |
宋鹏斐. 基于卷积神经网络和Transformer的医学图像分割算法的研究[D]. 烟台: 山东工商学院, 2023.
|
|
SONG P F. The Research on medical image segmentation algorithm based on convolutional neural network and Transformer[D]. Yantai: Shandong Institute of Business, 2023. (in Chinese)
|
8 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Proceedings of NIPS'21. Cambridge, USA: MIT Press, 2021: 12077-12090.
|
9 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
10 |
张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述. 计算机工程与应用, 2022, 58(8): 45- 57.
URL
|
|
ZHANG X, YAO Q A, ZHAO J, et al. Image semantic segmentation based on fully convolutional neural network. Computer Engineering and Applications, 2022, 58(8): 45- 57.
URL
|
11 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
12 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
13 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
14 |
|
15 |
邵党国, 朱彧麟, 马磊, 等. 基于空洞卷积神经网络的医学超声图像去噪. 现代电子技术, 2023, 46(13): 55- 61.
URL
|
|
SHAO D G, ZHU Y L, MA L, et al. Medical ultrasound image denoising based on void convolutional neural network. Modern Electronics Technique, 2023, 46(13): 55- 61.
URL
|
16 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-07-10]. https://arxiv.org/abs/2010.11929.
|
17 |
TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[EB/OL]. [2023-07-10]. http://arxiv.org/abs/2012.12877v2.
|
18 |
ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 6881-6890.
|
19 |
李清格, 杨小冈, 卢瑞涛, 等. 计算机视觉中的Transformer发展综述. 小型微型计算机系统, 2023, 44(4): 850- 861.
URL
|
|
LI Q G, YANG X G, LU R T, et al. Transformer in computer vision: a survey. Journal of Chinese Computer Systems, 2023, 44(4): 850- 861.
URL
|
20 |
CHEN J N, LU Y Y, YU Q H, et al. TransU-Net: transformers make strong encoders for medical image segmentation[EB/OL]. [2023-07-10]. http://arxiv.org/abs/2102.04306v1.
|
21 |
ZHANG Y D, LIU H Y, HU Q. TransFuse: fusing transformers and CNNs for medical image segmentation[C]//Proceedings of the 24th Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 14-24.
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
23 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
24 |
CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration[EB/OL]. [2023-07-10]. http://arxiv.org/abs/1902.03368v2.
|
25 |
|