[1] LIU Y, LIU X, LI F, et al.Closing the "quantum supremacy" gap:achieving real-time simulation of a random quantum circuit using a new sunway supercomputer[EB/OL].[2022-08-01].https://arxiv.org/abs/2110.14502. [2] LIU X, GUO C, LIU Y, et al.Redefining the quantum supremacy baseline with a new generation sunway supercomputer[EB/OL].[2022-08-01].https://arxiv.org/abs/2111.01066. [3] PHILP I R.Software failures and the road to a petaflop machine[C]//Proceedings of the 11th International Symposium on High Performance Computer Architecture.Washington D.C., USA:IEEE Computer Society, 2005:235-246. [4] 胡维, 蒋艳凰, 刘光明, 等.E级超级计算机故障预测的数据采集方法[J].国防科技大学学报, 2016, 38(1):93-100. HU W, JIANG Y H, LIU G M, et al.Data collection for failure prediction toward exascale supercomputers[J].Journal of National University of Defense Technology, 2016, 38(1):93-100.(in Chinese) [5] JOHNSON T, KWOK I, NG R.Fast computation of 2-dimensional depth contours[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 1998:224-228. [6] HE Z Y, XU X F, DENG S C.Discovering cluster-based local outliers[J].Pattern Recognition Letters, 2003, 24(9/10):1641-1650. [7] ARNING A, AGRAWAL R, RAGARAN P.A linear method for deviation detection in large database[C]//Proceedings of the 2nd IEEE International Conference on Knowledge Discovery in Databases and Data Mining.Washington D.C., USA:IEEE Press, 1996:164-169. [8] JAGADISH H V, NICK K, MUTHUKRISHNAN S.Mining deviants in a time series database[C]//Proceedings of the 25th IEEE International Conference on Very Large Data Bases.Washington D.C., USA:IEEE Press, 1999:7-10. [9] KNORR E M, NG R T, TUCAKOV V.Distance-based outliers:algorithms and applications[J].The VLDB Journal, 2000, 8(3/4):237-253. [10] BREUNIG M M, KRIEGEL H P, NG R T, et al.LOF:identifying density-based local outliers[C]//Proceedings of SIGMODʼ00.New York, USA:ACM Press, 2000:93-104. [11] 赵串串, 游进国, 李晓武.用于下一项推荐的序列感知深度网络[J].小型微型计算机系统, 2020, 41(7):1389-1394. ZHAO C C, YOU J G, LI X W.Sequence-aware deep network for the next-item recommendation[J].Journal of Chinese Computer Systems, 2020, 41(7):1389-1394.(in Chinese) [12] 杨瑞朋, 屈丹, 朱少卫, 等.基于改进时间卷积网络的日志序列异常检测[J].计算机工程, 2020, 46(8):50-57. YANG R P, QU D, ZHU S W, et al.Anomaly detection for log sequence based on improved temporal convolutional network[J].Computer Engineering, 2020, 46(8):50-57.(in Chinese) [13] 胡姣姣, 王晓峰, 张萌, 等.基于深度学习的时间序列数据异常检测方法[J].信息与控制, 2019, 48(1):1-8. HU J J, WANG X F, ZHANG M, et al.Time-series data anomaly detection method based on deep learning[J].Information and Control, 2019, 48(1):1-8.(in Chinese) [14] VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N, et al.A review of process fault detection and diagnosis:part III:process history based methods[J].Computers & Chemical Engineering, 2003, 27(3):327-346. [15] VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N.A review of process fault detection and diagnosis:part II:qualitative models and search strategies[J].Computers & Chemical Engineering, 2003, 27(3):313-326. [16] LIU Y J, MENG Q H, ZENG M, et al.Fault diagnosis method based on probability extended SDG and fault index[C]//Proceedings of the 12th World Congress on Intelligent Control and Automation.Washington D.C., USA:IEEE Press, 2016:2868-2873. [17] SHAKERI M, RAGHAVAN V, PATTIPATI K R, et al.Sequential testing algorithms for multiple fault diagnosis[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2000, 30(1):1-14. [18] GE N, NAKAJIMA S, PANTEL M.Online diagnosis of accidental faults for real-time embedded systems using a hidden Markov model[J].Transactions of the Society for Modeling and Simulation International, 2015, 91(10):851-868. [19] TYAGI S K, PANDEY D, TYAGI R.Fuzzy set theoretic approach to fault tree analysis[J].International Journal of Engineering, Science and Technology, 2010, 2(5):276-283. [20] 周志杰, 曹友, 胡昌华, 等.基于规则的建模方法的可解释性及其发展[J].自动化学报, 2021, 47(6):1201-1216. ZHOU Z J, CAO Y, HU C H, et al.The interpretability of rule-based modeling approach and its development[J].Acta Automatica Sinica, 2021, 47(6):1201-1216.(in Chinese) [21] GAO T R, YU D, YUE D F.Probabilistic neural network based on adaptive error correction model and its application in failure diagnosis[J].Computer Integrated Manufacturing Systems, 2013, 19(11):2824-2833. [22] 吕瑞, 孙林夫.基于多源信息融合故障树与模糊Petri网的复杂系统故障诊断方法[J].计算机集成制造系统, 2017, 23(8):1817-1831. LÜ R, SUN L F.Fault diagnosis method of complex system based on multi-source information fusion fault tree and fuzzy Petri net[J].Computer Integrated Manufacturing Systems, 2017, 23(8):1817-1831.(in Chinese) [23] 郑玮, 杨学猛, 葛宁.基于专家系统和神经网络的卫星故障诊断系统设计与实现[J].燕山大学学报, 2016, 40(1):74-80. ZHENG W, YANG X M, GE N.Design and implementation of fault diagnosis system for satellite based on expert system and neural network[J].Journal of Yanshan University, 2016, 40(1):74-80.(in Chinese) [24] 宋龙龙, 王太勇, 宋晓文, 等.基于Petri网建模与FTA的动车组受电弓故障诊断[J].仪器仪表学报, 2014, 35(9):1990-1997. SONG L L, WANG T Y, SONG X W, et al.Fault diagnosis of pantograph type current collector of CRH2 electric multiple units based on Petri net modeling and fault tree analysis[J].Chinese Journal of Scientific Instrument, 2014, 35(9):1990-1997.(in Chinese) [25] 张燕, 佘维, 李平.基于Petri网和故障树的电力系统故障诊断模型[J].计算机测量与控制, 2015, 23(8):2626-2628, 2632. ZHANG Y, SHE W, LI P.Fault diagnosis model of electric power systems based on petri nets and fault tree analysis[J].Computer Measurement & Control, 2015, 23(8):2626-2628, 2632.(in Chinese) [26] 谢光强, 郭小全, 李杨, 等.微型嵌入式系统故障诊断方法综述[J].计算机应用研究, 2019, 36(5):1281-1285, 1292. XIE G Q, GUO X Q, LI Y, et al.Review of fault diagnosis methods for micro-embedded system[J].Application Research of Computers, 2019, 36(5):1281-1285, 1292.(in Chinese) [27] 袁远, 李世杰, 邢建英, 等.E级高性能计算机系统中监控分系统的挑战与设计[J].计算机工程与科学, 2021, 43(8):1366-1375. YUAN Y, LI S J, XING J Y, et al.Monitoring subsystem for exascale HPC systems:challenges and design[J].Computer Engineering & Science, 2021, 43(8):1366-1375.(in Chinese) [28] YAO L Y, CHU Z X, LI S, et al.A survey on causal inference[J].ACM Transactions on Knowledge Discovery From Data, 2021, 74(1):46. [29] ATHEY S, IMBENS G.Machine learning methods for estimating heterogeneous causal effects[J].Statistics, 2015, 5:1-26. [30] CHIKAHARA Y, FUJINO A.Causal inference in time series via supervised learning[C]//Proceedings of the 27th IEEE International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2018:2042-2048. [31] EGAMI N, IMAI K.Causal interaction in factorial experiments:application to conjoint analysis[J].Journal of the American Statistical Association, 2019, 114(526):529-540. [32] GUO R C, LU C, LI JD, et al.A survey of learning causality with data:Problems and methods[J].ACM Computing Surveys, 2020, 53(4):37-75. [33] HAHN P R, MURRAY J S, CARVALHO C M.Bayesian regression tree models for causal inference:regularization, confounding, and heterogeneous effects (with discussion)[J].Bayesian Analysis, 2020, 15(3):965-1056. [34] IMBENS G.Potential outcome and directed acyclic graph approaches to causality:relevance for empirical practice in economics[J].Journal of Economic Literature, 2020, 58(4):1129-1179. [35] FU X, REN R, ZHAN J, et al.LogMaster:mining event correlations in logs of large-scale cluster systems[C]//Proceedings of IEEE International Symposium on Reliable Distributed Systems.Washington D.C., USA:IEEE Computer Society, 2012:71-80. [36] 韩东, 杨震, 许葆华.基于数据驱动的故障预测模型框架研究[J].计算机工程与设计, 2013, 34(3):1054-1058. HAN D, YANG Z, XU B H.Research on fault prognostics model and frame based on data-driven method[J].Computer Engineering and Design, 2013, 34(3):1054-1058.(in Chinese) [37] LIANG Y, ZHANG Y Y, XIONG H, et al.Failure prediction in IBM BlueGene/L event logs[C]//Proceedings of the 7th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2007:583-588. [38] 胡维.面向超级计算机的故障预测和容错关键技术研究[D].长沙:国防科技大学, 2017. HU W.Research on failure prediction and fault-tolerance technology for supercomputer[D].Changsha:National University of Defense Technology, 2017.(in Chinese) [39] 陆兴海, 彭华盛.运维数据治理——构筑智能运维的基石[M].北京:机械工业出版社, 2022. LU X H, PENG H S.Operation and maintenance data governance:the cornerstone of building intelligent operation and maintenance[M].Beijing:China Machine Press, 2022.(in Chinese) |